Name of the Programme: MCA

Course Code: CSA-512

Title of the Course: Machine Learning Lab Number of Credits: 2 (0L+0T+ 2P)

Number	of Cre	alts: 2	(UL+UI+ 4	<u>_</u>
Effective	from	AY: 202	22-23	

Prerequisites	Course: Mathematics for Computer Science and Programming		
for the course	language background.		
Objectives:	The objective is to learn to build the different machine learning		
	models by doing a set of assignments and mini projects.		
Content:	Introduction to python libraries for machine learning - scikit learn,	5 hours	
	tensor flow, keras, pytorch, pandas, matplotlib, seaborn, numpy and		
	other relevant libraries.		
	Four branches of machine learning-supervised, unsupervised, self-	10 hours	
	supervised, reinforcement, Evaluating machine learning models, Data		
	pre-processing, feature engineering and feature learning, overfitting		
	and underfitting - Numerical Programming fundamentals-finding		
	nearest neighbours via Euclidean distance-splitting data sets into		
	training and testing.		
	Regression, cross validation and regularization-polynomial regression	10 hours	
	-model selection on a fixed validation set -Polynomial Regression -		
	Model Selection with Cross-Validation-Polynomial Regression with L2		
	Regularization - Model Selection with Cross-Validation-Comparison of		
	methods on the test set.		
	Evaluating Binary Classifiers and Implementing Logistic Regression-		
	Binary Classifier for movies reviews-classifying newswires-predicting		
	house prices -Computing the Loss for Logistic Regression without		
	Numerical Issues		
	Neural Networks and Stochastic Gradient Descent-MLPs with L-BFGS:	10 hours	
	What model size is effective?-MLPs with SGD: What batch size and		
	step size?-Producing your own figure comparing batch size and		
	learning rate.		
		10 h a	
	Trees and Random Forests for Bag of Words-Code Implementation of	10 nours	
	Decision Tree Regression-Decision Trees for Review Classification -		
	Random Forests for Review Classification -Comparing Trees to Linear		
	Niddels for Review Classification.		
	Implementation of CNN_PNN_ISTM_Implementation of Poltzmann	10 hours	
	machine and Transformers (BERT, GPT3). Generative deep learning	TO HOULS	
	(GAN)		
	Project discussions -Classifying Images with Feature Transformations-	5 hours	
	Classifying Sentiment from Text Reviews-Recommendation Systems		
	via Matrix Factorization-Text summarization - language Translation -		
	Sentimental analysis- speech to text translatioXiv, Explore the keras		
	ecosystem.		
Pedagogy:	Programming in lab and practical exercises		
References/R	1. Hands on machine learning with scikit learn by Aurielien		
<u>eadings</u>	2. Deep learning with python by Francois		
	3. Text Analytics with Python: A Practitioner's Guide to Natural		
	Language Processing by dipanjan sarkar.		
	4. keras: the python deep learning API		

	5. <u>https://www.cs.tufts.edu/comp/135/2020f/assignments.html</u>	
	6. Python library reference	
<u>Course</u>	Students will be able –	
Outcomes	1. to collect data and preprocess them	
	2. choose the suitable machine learning model and	
	3. study its performance and able to carry out mini project	