Name of the Programme: MCA

Course Code: CSA 524

Title of Course: Natural Language Processing

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Encentre nom A		
<u>Prerequisites</u>	Fundamentals of Artificial Intelligence; Mathematical Foundations for	
for the course	Artificial Intelligence.	
	Machine Learning and Programming background. Introduction to NLP	
	(Theory), Mathematical foundations for AI.	
Objectives	This course will focus on understanding the essentials of Natural	
	Language Processing (NLP), areas in NLP, algorithms, and NLP tasks.	
	Students who complete this course will gain a foundational	
	understanding in natural language processing methods and	
	strategies. They will also learn how to evaluate the strengths and	
	weaknesses of various NLP technologies and frameworks as they gain	
	practical experience in the NLP toolkits available.	
<u>Content</u>	Part I: Foundations of Natural Language Processing	8 hours
	Introduction	
	 Natural Language Processing - Problems and perspectives 	
	 Introduction/Recall to/of probability calculus 	
	O N-grams and Language Models	
	o Markov Models	
	 Introduction to Machine Learning and Deep Learning 	
	 Recurrent Neural Network Language Models 	
	 The evaluation of NLP applications 	
	Corpora	
	 Corpora and their construction: representativeness 	
	 Concordances, collocations and measures of words 	
	association	
	 Methods for Text Retrieval 	
	Regular expressions	
	Part II: Natural Language Processing	16 hours
	 Computational Phonetics and Speech Processing 	
	 Speech samples: properties and acoustic measures 	
	 Analysis in the frequency domain, Spectrograms 	
	 Applications in the acoustic-phonetic field. 	
	 Speech recognition with HMM and Deep Neural 	
	Networks	
	 Tokenisation and Sentence splitting 	
	 Computational Morphology 	
	 Morphological operations 	
	 Static lexica, Two-level morphology 	
	 Computational Syntax 	
	 Part-of-speech tagging 	
	 Grammars for natural language 	
	 Natural language Parsing 	
	 Supplementary worksheet: formal grammars for NL 	
	 Formal languages and Natural languages. 	
	Natural language complexity	
	 Phrase structure grammars, Dependency 	
	Grammars	
	Treebanks	
	 Modern formalisms for parsing natural 	
	languages	
	 Computational Semantics 	

	 Lexical semantics: WordNet and FrameNet 	
	 Word Sense Disambiguation 	
	 Distributional Semantics & Word-Space models 	
	 Logical approaches to sentence semantics 	
	Dest III. Augliesticae and Case studies	Chauna
	Part III: Applications and Case studies:	6 nours
	 Solving Downstream Tasks: Document classification, 	
	Sentiment Analysis, Named Entity Recognition, Semantic	
	Textual Similarity	
	 Prompting Pre-Trained Language Models 	
	 Network Embedding 	
	Sample list of Assignments to be carried out during the Tutorial	
	Slots -	30 hours
	Accignment 1. Import alth and download the 'stopwords' and	50 110015
	Assignment -1 -import mick and download the stopwords and	
	punkt packages.	
	Assignment-2 -Import spacy and load the language model.	
	Assignment -3 -How to tokenize a given text?	
	Assignment-4 -How to get the sentences of a text document?	
	Assignment- 5-How to tokenize a text using the `transformers`	
	nackage?	
	Assignment 6 - How to tokonize text with stonwards as delimiters?	
	Assignment -0 - now to tokenize text with stopwords as deminiters:	
	Assignment- 7- How to remove stop words in a text?	
	Assignment -8- How to add custom stop words in spaCy?	
	Assignment- 9 - How to remove punctuations?	
	Assignment-10 - How to perform stemming?	
	Assignment -11 -How to lemmatize a given text?	
	Assignment-12 - How to extract usernames from emails?	
	Assignment -13-How to find the most common words in the text	
	aveluding stopwords	
	Assignment -14- How to do spell correction in a given text?	
	Assignment -15- How to tokenize tweets?	
	Assignment -16- How to extract all the nouns in a text?	
	Assignment -17- How to extract all the pronouns in a text?	
	Assignment - 18 - How to find similarity between two words?	
	Assignment -19- How to find similarity between two documents?	
	Assignment -20 -How to find the cosine similarity of two	
	documents?	
Dedegeogy	Hands on assignments/tutorials / near teaching / nair	
Pedagogy	nanus-on assignments/tutonais / peer-teaching / pair	
	programming/presentations / mini-project.	
	Lectures / Practical / tutorials / assignments / self-study / mini-	
	project	
<u>References/</u>	1. Allen, James, Natural Language Understanding, Second Edition,	
Readings	Benjamin/Cumming, 1995.	
	2. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.	
	3. Jurafsky, Dan and Martin, James, Speech and Language Processing.	
	Second Edition Prentice Hall 2008	
	A Manning Christopher and Heinrich Schutze Foundations of	
	Statistical	
	5. Natural Language Processing, MIT Press, 1999.	
	6. Tamburini, F Neural Models for the Automatic Processing of	
	Italian, Bologna: Pàtron. 2022	
	7. T. McEnery and A. Wilson. Corpus Linguistics, EUP. 2001	
	8. https://corpora.ficlit.unibo.it/NLP/	
	9. https://www.machinelearningplus.com/nlp/nlp-exercises/	
	10 Deep Learning by Goodfellow Rengio and Courville free online	
	11. Machine Learning — Δ Probabilistic Derspective by Kevin Murphy	
1		

	online 12. Natural Language Processing by Jacob Eisenstein free online Speech and Language Processing by Dan Jurafsky and James H. Martin (3rd ed. draft)
<u>Course</u>	1. Learners will learn about the concepts in natural language
Outcomes	processing.
	2. Learners will have a fair idea of different areas in NLP
	 Learners will appreciate the complexities involved in natural language processing.
	 Through lectures and practical assignments, students will learn the necessary tricks for making their models work on practical problems.
	5. They will learn how to contribute towards the development of NLP
	Resources and Tools.