Name of the Programme: MCA

Course Code: CSA-531

Title of Course: Theory of Computation

Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Effective from A		
Prerequisites for the course	Programme Prerequisites	
Objectives Objectives	1. To give an overview of the theoretical foundations of computer	
<u>Objectives</u>	science from the perspective of formal languages	
	2. To illustrate finite state machines to solve problems in computing.	
Content	General Concepts of Automata Theory: Alphabets Strings, Languages,	3 hours
	Grammars, Applications of Automata Theory.	5 115 415
	Finite Automata (FA): Introduction, Deterministic Finite Automata	12 hours
	(DFA) - definition and notations, language of a DFA. Nondeterministic	12 1.0 0.10
	Finite Automata (NFA)- Definition, language of an NFA, Equivalence of	
	DFA and NFA, Applications of FA.	
	Finite Automata with Epsilon Transitions, Eliminating Epsilon	
	transitions, Minimization of DFA.	
	Finite automata with output (Moore and Mealy machines) and inter-	
	conversion.	
	Regular Expressions (RE): Introduction, Identities of RE.	10 hours
	Finite Automata and Regular Expressions - conversions, Algebraic	
	Laws for Regular Expressions, applications of RE.	
	Regular grammars: Definition, regular grammars, and FA, Proving	
	languages to be non-regular (Pumping lemma), Properties of Regular	
	Language, applications.	
	Context-Free Grammar (CFG): Definition, Derivations Using a Grammar-	10 hours
	Leftmost and rightmost derivation, Parse tree, Applications, Ambiguity	
	in CFG. Minimization of CFG, CNF, GNF, Pumping Lemma for CFL's.	
	Pushdown Automata (PDA): Definition, Language of PDA- Acceptance	15 hours
	by Final State and Acceptance by Empty stack, Equivalence of CFG and	
	PDA, Deterministic PDA, Chmosky normal form of CFG	
	Turing Machines (TM): Formal definition and behavior, Languages of a	
	TM, TM as accepters, and TM as a computer of integer functions, Types	
	of TMs.	
	Recursive And Recursively Enumerable Languages (REL): Properties of	10 hours
	recursive and recursively enumerable languages, Universal Turing	
	machine, The Halting problem, Undecidable problems about TMs.	
	Context-sensitive language and linear bounded automata (LBA),	
	Chomsky hierarchy, Decidability.	
Pedagogy	lectures/ tutorials/assignments/self-study	
References/	1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to	
Readings	Automata Theory Languages and Computation, Pearson Education,	
	India (latest edition)	
	2. H.R.Lewis and C.H.Papadimitriou, Elements of the Theory of	
	Computation, PHI, (latest edition)	
	3. J.Martin, Introduction to Languages and the Theory of Computation,	
Course	TMH (latest edition) At the end of the course students will be able to:	
<u>Course</u>		
<u>Outcomes</u>	 use basic concepts of formal languages of finite automata techniques 	
	 design Finite Automata for different Regular Expressions and 	
	Languages	
	 Construct context-free grammar for various languages 	
	- Construct context-free grammar for various languages	