Name of the Programme: MCA

Course Code: CSA-604

Title of the Course: Data science

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

Effective from A	Y: 2022-23	1
Prerequisites	Statistics and probability theory and python programming.	
for the course	Python programming and Data science theory fundamentals.	
Objectives	To get started with basics of Data Science and learn all aspects of	
	data science in its entirety. Main objectives are as under -	
	 to understand basic process of data science 	
	 Python and Jupyter notebooks 	
	• An applied understanding of how to manipulate and analyze	
	uncurated datasets	
	Basic statistical analysis and basic machine learning methods like	
	linear regression .	
	• How to effectively visualize results using python APIs or tools.	
Content	Unit -1: Basics of Data Science: Introduction; Typology of problems-	4 hours
	Data Science in a big data world: Benefits and uses of data science	
	and big data-Facets of data-The data science process-The big data	
	ecosystem and data science-The data science process: Overview of	
	the data science process- Defining research goals and creating a	
	project charter- Retrieving data-Cleansing, integrating, and	
	transforming data-Exploratory data analysis-Build the models-	
	Presenting findings and building applications on top of them.	
	Unit -2	2 hours
	Mathematics for Data science	2 110015
	 Importance of linear algebra, statistics and optimization from 	
	a data science perspective; Structured thinking for solving	
	data science problems.	
	 Linear Algebra: Matrices and their properties (determinants, 	
	traces, rank, nullity, etc.); Eigenvalues and eigenvectors;	
	Matrix factorizations; Inner products; Distance measures;	
	Projections; Notion of hyperplanes; half-planes.	
	 Probability, Statistics and Random Processes: Probability 	
	theory and axioms; Random variables; Probability	
	distributions and density functions (univariate and	
	multivariate); Expectations and moments; Covariance and	
	correlation; Statistics and sampling distributions; Hypothesis	
	testing of means, proportions, variances and correlations;	
	Confidence (statistical) intervals; Correlation functions;	
	White-noise process.	
	Unit -3 Introduction to Data Science Methods: Linear regression as an	2 hours
	exemplar function approximation problem; Linear classification	
	problems.	
	Unit -4 Handling large data on a single computer	2 hours
	 The problems you face when handling large data-General 	
	techniques for handling large volumes of data-General	
	programming tips for dealing with large data sets-Case study	
	1: Predicting malicious URLs-First steps in big data-	
	Distributing data storage and processing with frameworks	
	Unit 5: Join the NoSQL movement-Introduction to NoSQL	4 hours
	Unit 6: The rise of graph databases	4 hours
	 Introducing connected data and graph databases 	
	 Introducing Neo4j: a graph database 	4 hours
	Unit 7: Data visualization to the end user	

r		Γ
	Data visualization options	4 hours
	Crossfilter, the JavaScript MapReduce library	
	Creating an interactive dashboard with dc.js	4 hours
	Dashboard development tools	
	Data science Story telling.	
	Assignments to be discussed during the Tutorial slots -	30 hours
	1. Python libraries – Numpy, Matplotlib, seaborn, pandas.	
	2. Write program to do Exploratory data analysis using the libraries	
	above Data collection(Kaggle, github and Machine learning	
	repository), data cleaning (removing missing values, reformatting data etc.	
	3. Write program to do univariate analysis using tools like Box plot,	
	histogram etc.	
	4. Write program to do bivariate analysis using tools like scatter	
	plots, box plots.	
	5. Demo on business intelligence tools -Business intelligence tools	
	help an organization analyze huge chunks of data; they provide	
	insights with actionable recommendations - Tableau,	
	Qlik,splunk,Trillium,Logi analytics, powerBI	
	6. Write program to implement PCA.	
	7. Write program to implement SVD	
	8. Use tools like tableau/Power BI to do Visualizatiation for large	
	data set and create dashboard	
	9. Mini Project: With the tools of Jupyter notebooks, numpy,	
	pandas, and Visualization, you're ready to do sophisticated	
	analysis on your own. You'll pick a dataset we've worked with	
	already and perform an analysis for this first project	
	10. Machine Learning: To take your data analysis skills one step	
	further, write program to do basics of machine learning and how	
	to use sci-kit learn - a powerful library for machine learning.	
	11. Working with Text and Databases: You'll find yourself often	
	working with text data or data from databases. This week will	
	give you the skills to access that data. For text data, we'll also	
	give you a preview of how to analyze text data using ideas from	
	the field of Natural Language Processing and how to apply those	
	ideas using the Natural Language Processing Toolkit (NLTK)	
	library.	
	12. Final Project: These weeks let you showcase all your new skills in	
	an end-to-end data analysis project. You'll pick the dataset, do	
	the data munging, ask the research questions, visualize the data, draw conclusions, and present your results.	
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study.	
<u></u>	Lab assignments/ research paper reading/ discussion/ tools	
	demonstration/ mini project.	
References/	1. Practical statistics for data science by peter bruce and andrew	
Readings	bruce	
	2. Naked statistics by charles wheelon	
	3. Business data science by matt taddy	
	4. Elements of statistical learning by Trevor Hastie, Robert and	
	jerome	
	5. Python for data analysis	
	6. Data science and big data analytics -EMC2	
	7. Hands-On Data Structures and Algorithms with Python — By Dr.	
	Basant Agarwal.	
	8. 3. The Art of Data Science — by Roger D. Peng and Elizabeth	

	Matsui.	
	9. Automate the Boring Stuff With Python: Practical Programming—	
	by Al Sweigart.	
Course	At the end of the course, the students will –	
<u>Outcomes</u>	1. Enrich one's knowledge with overall basics of data science	
	2. appreciate Data Science to be able to get started in the direction.	
	3. Students should be able to carry out mini Data Science projects	
	using python libraries.	