Name of the Programme: MCA

Course Code: CSA-608

Title of the Course: Deep Learning Number of Credits: 4(2L+2T+0P)

Effective from AY: 2022-23 Familiarity with linear algebra, probability theory, machine learning, Prerequisites for the course familiarity with python This course is aimed at any one who wishes to explore deep learning **Objectives:** from scratch. This course offers a practical hands on exploration of deep learning, avoiding mathematical notation, preferring instead to explain quantitative concepts through programming using python API Introduction :- what is deep learning ?- Artificial Intelligence, machine **Content:** 2 hours learning and deep learning -learning representation from data-"the deep " in deep learning -understanding how deep learning works what deep learning has achieved so far. Revision of Fundamentals of machine learning-probabilistic 3 hours modeling - early neural networks- kernel methods-decision tree, random forest and gradient boosting machines -back to neural networks- what makes deep learning different-the modern machine learning landscape. Four branches of machine learning -supervised -unsupervised-self-3 hours supervised – reinforcement learning – evaluating machine learning models – data processing, feature engineering- overfitting and underfitting -universal workflow of machine learning 3 hours The mathematical building block of neural networks – a first look at neural networks - data representation for neural networks- the gears of neural networks : Tensor operations- the engine of neural networks : Gradient -based optimization. Neural networks – anatomy of neural networks- building blocks of 3 hours deep learning -models of layers -loss functions and optimizers-keys to configuring the learning process.-introduction to keras -keras,tensor flow, theoano and CNTK – developing with keras -setting up a deep learning workstation -case studies - classification movie reviews classification newswires -predicting house prices. Deep Learning for computer vision – Introduction to convnets – 3 hours training convnets from scratch on small data sets – using pre trained convnet – visualizing what convnets learn Deep learning for text and sequences – working with text -one-hot 3 hours encoding of words and characters -using word embeddingsunderstanding recurrent neural networks – A recurrent layer in Keras -understanding LSTM and GRU layers- A concrete LSTM example in Keras. 5 hours Advanced use of recurrent neural networks- A temperatureforecasting problem – preparing the data – a common-sense, non machine learning baseline-using recurrent drop out to fight overfitting- stacking recurrent layers-using bidirectional RNNs sequences processing with convnets 5 hours Generative deep learning – text generation with LSTM- deep Dream – neural style transfer-generative images with variational autoencoders- introduction to generative adversarial networks. Assignments to be carried out during Tutorial Slot -10 * 3 = 30Assignment 1 - Logistic Regression with a Neural Network hours mindset

	 Assignment 2 - Planar data classification with one hidden laver 	
	• Assignment 3 - Building your Deep Neural Network: Step by	
	Step	
	Assignment 4 - Deep Neural Network for Image Classification:	
	Application	
	 Assignment 5 – Initialization and performance of model, 	
	Regularization and whether it helps eliminate overfitting,	
	Gradient Checking with model used, Optimization Methods	
	used for every model	
	Assignment 6- TensorFlow Tutorial	
	Assignment 7 - Convolution model Step by Step demo	
	 Assignment 8 - Convolution model Application for image classification 	
	classification	
	 Assignment 9- Keras Tutorial - Autonomous driving application. Car Detection Ease Recognition 	
	Accignment 10 Art Congration with Neural Style transfer	
Dedegeogra	Assignment 10 - Art Generation with Neural Style transfer	
Pedagogy:		
<u>References/</u>	Main Reading :-	
Readings	1. Introduction to Statistical Learning, Gareth James, Daniela Witten, Trover Hastia, Behart Tibshirani, Springer, 2012	
	2 Ethom Alagydia, Introduction to Machina Learning, MIT Proce	
	2. Ethemapayum, introduction to Machine Learning, with Press.	
	Classification,.	
	4. Peter Flach , Machine Learning , Cambridge	
	5. Christopher M. Bishop, Pattern recognition and machine Learning,	
	springer.	
	6. Deep Learning, Ian Good fellow, MIT press	
	7. Tom Michele, Machine Learning, McGraw-Hill.	
<u>Course</u>	By the end of the course , students will be able to:	
<u>Outcomes</u>	 understand a wide variety of deep learning algorithms. 	
	 understand how to apply a variety of learning algorithms to data. 	
	 understand how to perform evaluation of learning algorithms and 	
	model selection.	
	• equip themselves with a general understanding of deep learning.	