Name of the Programme: MCA

Course Code: CSA-611

Title of the Course: Artificial Intelligence

Number of Credits: 4 (2L-2T-0P) Effective from AY: 2022-23

D		
Prerequisites	Strong knowledge of Mathematics; Good command over	
for the course	programming languages; Good Analytical Skills; basic knowledge of	
	Statistics and modelling.	
Objectives:	This course provides students with an in-depth introduction to the	
Objectives.	five main twikes of Artificial Intelligence nemely. Symbolists	
	tive main tribes of Artificial Intelligence-namely Symbolists,	
	Connectionists, Bayesians, Evolutionaries and Analogizers.	
	Symbolists systems include Decision trees, Random decision forests,	
	Production rule systems inductive programming	
	Connection rule systems, inductive programming.	
	Connectionists include Artificial Neural nets, Reinforcement learning,	
	Deep learning	
	Bayesians include Hidden Markov Chains-Graphical Models-Causal	
	inference	
	Evolutionary - hiologist - hiologically inspired computing	
	A salasi aya (as shalasi ta) isalada hasayast asi dha ayahasi tha	
	Analogizers (psychologists) include k nearest neighbour algorithm.	
	This course is aimed at exploring all facets of AI and obtain in-depth	
	understanding of this facilitating field.	
	Unit-1 :-Introduction to AL :- The roots of Artificial Intelligence - Five	1 hour
Contonti	tribe of AL. The symbolist connectionist Evolutionaries The	1 11001
<u>content:</u>		
	Bayesians-Analogizer	
	Unit-2:-Symbolic Tribe (Symbolic AI) Problem-solving-Solving	5 hours
	Problems by Searching -Search in Complex Environments -	
	Adversarial Search and Games -Constraint Satisfaction Problems	
	Knowledge reasoning and planning legical Agents First Order	
	Knowledge, reasoning, and planning Logical Agents - First-Order	
	Logic - Inference in First-Order Logic - Knowledge Representation -	
	Automated Planning .	
	Unit-3 :-Bayesian Tribe :- Uncertain knowledge and reasoning -	5 hours
	Quantifying Uncertainty -Probabilistic Reasoning-Probabilistic	
	Reasoning over Time -Probabilistic Programming -Making Simple	
	Decisions - Making Complex Decisions - Multiagent Decision Making	
	Heit A. Connectionicm tribe . Machine Learning supervised	E bours
	Unit-4 :- Connectionism tribe :- Machine Learning - supervised	5 nours
	learning -unsupervised learning-Artificial neural networks-	
	perceptron-MLP-deep neural network -CNN-RNN-LSTM -hop field	
	neural network	
	Unit-5 Evolutionaries tribe An Overview of Combinatorial	5 hours
	Ontimization An Introduction to Constic Algorithms Theoretical	5 110 413
	Foundations of Genetic Algorithms-Genetic Algorithms in Engineering	
	and Optimization-Genetic Algorithms in Natural Evolution-Simulated	
	Annealing and Tabu Search GALib-Genetic Algorithm Optimization	
	Toolbox (GAOT) under Matlah	
	Unit 6 : Analogizors : constrained ontimization Margin and SVM	5 hours
		J HOUIS
	hard margin and soft margin, non-linearity - kernel- different types of	
	kernels-k nearest neighbors	
	Unit 7 :- Communicating, perceiving, and acting-Natural Language	<mark>4 hours</mark>
	Processing -Deep Learning for Natural Language Processing -	
	Computer Vision - Robotics	
	Conclusions, Philosophy, Ethics, and Safaty of AL. Evalainable AL. The	
	conclusions- Enhosophy, Ethics, and Salety OFAF- Explainable AF- The	
	Future of Al	_
	Problem Solving during Tutorial Slots	10 * 3 = 30
		hours
	1. Real-world path planning for pedestrians. In the first part,	

	students implement A* over a map that includes roads/paths	
	as well as elevations. In the second part, students collect	
	cost model is then learned via regression techniques	
	2 Solve maze via search -this assignment involves formulating	
	maze-solving as a search problem, image processing (via	
	OpenCV) as a step in maze-solving, as well as guided	
	performance/quality analysis of representational parameters.	
	3. Within the context of an artificial intelligence course, students	
	are taught to identify ethical issues within technical projects	
	and to engage in moral problem solving with regard to such	
	issues.	
	4. Neural network for face recognition using tensor flow -build	
	feedforward neural networks for face recognition using	
	TensorFlow. Students then visualize the weights of the neural	
	networks they train. The visualization allows students to	
	understand feedforward one-hidden layer neural networks in	
	terms of template matching, and allows students to explore	
	Overniting.	
	nathfinding technique by specializing a generic search	
	algorithm with custom action cost and heuristic cost	
	functions. Students apply classical search algorithms and	
	reflect on example organic paths to achieve "human-like"	
	pathfinding.	
	6. Implement a genetic algorithm in Python to evolve strategies	
	for Robby the Robot to collect empty soda cans that lie	
	scattered around his rectangular grid world.	
	7. Compare the performances of a brute-force search and a	
	search employing the Minimum Remaining Values (MRV)	
	heuristic in solving Sudoku puzzles.	
	8. The students need to understand and extend an existing	
	to recognize static hand gestures in images	
	9 Students learn about feedforward neural networks and the	
	backpronagation algorithm by implementing a percentron	
	network for AND and XOR Boolean functions and, given an	
	implementation of a feedforward network, learn digit	
	recognition using the MNIST data set.	
	10. In this assignment students extend a Tic Tac Toe program to	
	Ultimate Tic Tac Toe and implement a different search	
	strategy than the example code.	
Pedagogy:	Lectures/ tutorials/assignments/self-study.	
<u>Readings</u>	Ividin Reading :-	
Reduings	Artificial Intelligence -Modern approach -Russel and Norvig- 4th	
	Edition	
	3. Hands on Machine learning with sci-kit learn and tensorflow-	
	Orellie	
	4. Deep learning with python by Francois -	
	5. Elements of statistical learning - Trevor Hastie, Robert and Jerome	
	-springer.	
	6. Bayesian reasoning and machine learning - David barber	
	IV. GENERIC Algorithm by David E Goldberg.	

	 Artificial Intelligence- A Modern Approach (3rd edition) by norvig , russel
	 Artificial Intelligence By Example-2nd edition by Denies Rothman, PACKT
	10. Artificial Intelligence Engines: A Tutorial Introduction to the
	Mathematics of Deep Learning
	11. Human Compatible: Artificial Intelligence and the Problem of
	Control by Stuart Russel
	References
	 Artificial Intelligence - A guide for thinking humans by Melaine Mitchell.
	2. A world without work - by Daniel susskind.
	3. Genius Makers -Cade Metz
	4. what computer still cannot do by Hubert Dreyfus
	5. The alignment problem -Brian Christian
	6. Clara and sun by Kazuo Ishiguro
	7. Rebooting AI by Gary Marcus and Ernest Davis
	8. Four futures -Peter Frase
	9. Flake, The Computational Beauty of Nature, MIT Press, 1998.
	10. von Neumann, The Computer and the Brain. Yale University Press, 1958
	11. https://formtek.com/blog/artificial-intelligence-the-five-tribes-of-
	ai/
<u>Course</u>	By the end of the course , students will be able to -
<u>Outcomes</u>	 understand a wide variety of AI algorithms.
	 learn to apply different tribes in different applications.
	 understand how to apply a variety of learning algorithms to data.
	 understand how to perform evaluation of learning algorithms and model selection.
	 further learn to understand the need to understand Master
	algorithm - unification of all algorithms to solve complex problems.
	 carry out the mini project work with respect to the different paradigms.