Programme: MCA Course code: CSC-203 Number of credits: 4 (4L-0T-0P) Effective from AY: 2021-22

Title of course: Mathematics for Computer Science **Total contact hours:** 48 hours (48L-0T-0P)

<u>Prerequisites for the</u> <u>course</u>	Program Prerequisites	
<u>Objectives</u>	Students will be able to: Apply the concepts of mathematics in the modeling and design of computational problems and deeper understanding of subjects like machine learning/deep learning and other computer science subjects.	
Content	Introduction – importance of mathematics and their applications for computer science/machine learning/data science/deep learning <i>Functions, variables, equations, graphs</i> revision	2 hrs
	Probability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods- confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test-Linear regression, regularization	7 hrs
	Calculus Overview of Differential and Integral Calculus, Partial Derivatives Product and chain rule-Taylor's series, infinite series summation/integration concepts- Fundamental and mean value-theorems of integral calculus, evaluation of definite and improper integrals-Beta and Gamma functions, Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equations -Applications of Calculus	7L

	Linear Algebra: Systems of Linear Equations-Matrices-Solving Systems of Linear Equations-Vector Spaces-Linear Independence-Basis and Rank-Linear Mappings Affine Spaces Analytic Geometry Norms-Inner Products-Lengths and Distances Angles and Orthogonality-Orthonormal Basis Orthogonal Complement-Inner Product of Functions-Orthogonal Projections-Rotations Matrix Decompositions Determinant and Trace-Eigenvalues and Eigenvectors-Cholesky Decomposition	7L 7L 6L
	Eigendecomposition and Diagonalization Singular Value Decomposition-Matrix Approximation. Vector Calculus Differentiation of Univariate Functions-Partial Differentiation and Gradients-Gradients of Vector- Valued Functions-Gradients of Matrices Useful Identities for ComputingGradients- Backpropagation and Automatic Differentiation- Higher-Order Derivatives-Linearization and Multivariate Taylor Series Optimization Primal Solutions and Concept and Need for Duality; Optimization Using Gradient Descent-	7L 5L
	Constrained Optimization -Lagrange Multipliers- Convex Optimization,	
Pedagogy	Problem solving approach and carrying out small project work using matlab tools	
<u>References/ Readings</u>	 Statistics -Robert S. Witte and John S. Witte Barron's AP Statistics, 8th Edition -Martin Sternstein, PhD. Statistics for Business and Economics - James T. McClave, P. George Benson and Terry T Sincich Naked Statistics: Stripping the Dread from 	

	 the Data – Charles Wheelan 5. Introduction to Linear Algebra - Gilbert Strang 6. Linear Algebra and Its Applications - David C. Lay 7. Functions and Graphs - I M Gelfand 8. Cartoon guide to calculus – Larry Gonick 9. Optimization Methods in Business Analytics— edX, MIT 	
<u>Learning Outcomes</u>	 To build a strong foundation in maths required for learning computer science/data science subjects. To understand fundamental concepts and tools in calculus and linear algebra with emphasis on their applications to computer science in particular to data science/machine learning 	