Name of the Programme : M.Sc. in Data Science

Course Code : CSD-503

Title of the Course : Machine Learning (Practical)

Number of Credits : 2(0L-0T-2P)

Total Contact Hours : 60 hours (0L-0T-60P) Effective from

AY : 2023-24

Pre-requisites for the course	Machine learning theory and programming in python	
Course Objective:	This course aimed at imparting implementation of machin algorithms using python and its APIs	e learning
Content:	Suggested Lab assignments/work with respect to the following using python (scikit /keras libraries) /amazon sage maker/matlab toolbox - each assignment with duration of 4 hrs. and 8 hrs. for project work	
	 Write a program to implement version space. Write a program to implement a decision tree for given data. Write a program to implement linear regression for given data. 	5 hours 5 hours 5 hours
	4. Write a program to implement logistic regression.5. Write a program to implement SVM.6. Write a program to implement perceptron.	5 hours 5 hours 5 hours
	7. Write a program to implement a multilayer perceptron.8. Write a program to implement RNN.	5 hours 5 hours
	9. Write a program to implement CNN.	5 hours

	10. Write a program to implement HMM.	5 hours
	Capstone Mini Project work to assess the overall learning.	10 hours
Pedagogy:	Lab Assignments / Mini Project	
References/ Readings	 Main Reading:- Alpaydin, E. (2020). Introduction to machine learning. MIT press. Bishop, C. M. (2006). Pattern recognition and machine learning: springer New York. Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Cambridge university press. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Hart, Peter E., David G. Stork, and Richard O. Duda.(2000) Pattern classification. Hoboken: Wiley, 2000. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.	
Course Outcomes	 Practical implementation skills of machine learning algorithm Model development, evaluation, and feature engineering tecl Interpretability and explainability of machine learning models Awareness of ethical considerations in machine learning. 	nniques.

