Name of the Programme : M.Sc. in Data Science Course Code : CSD-507 Title of the Course : Fundamentals of AI (Practical) Number of Credits : 2 (OL-OT-2P) Total Contact Hours : 60 hours (OL-OT-60P) Effective from AY : 2023-24 | Pre-requisites for the course | Artificial Intelligence theory, probability and statistics, linear algebra, and Python programming | | | |-------------------------------|---|-------------|--| | Course
Objectives: | To develop a basic understanding of 1. Problem solving 2. Knowledge representation 3. Reasoning and learning methods of AI 4. Implementing AI algorithms | | | | | Assignment-1 -Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/paths as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques. | 10
hours | | | Tomanya De | Assignment-2 -Solve maze via search -this assignment involves formulating maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters | 10
hours | | | Content: | Assignment 3-Within the context of an artificial intelligence course, students are taught to identify ethical issues within technical projects and to engage in moral problem solving with regard to such issues. | 10
hours | | | | Assignment 4-Neural network for face recognition using tensor flow -build feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neural networks they train. The visualization allows students to understand feedforward one-hidden layer neural networks in terms of template matching, and allows students to explore overfitting. | 10
hours | | | | <u> </u> | J | |--------------------------|---|---| | | Assignment -5 -Organic path finding -Students develop a "humanlike" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding. | 10
hours | | | Assignment - 6 -Implement a genetic algorithm in Python to evolve strategies for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. And also Compare the performances of a brute-force search and a search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles. | 10
hours | | Pedagogy: | lectures/practical/tutorials/assignments/self-study | | | References
/Readings: | GF Luger, (2002). Artificial Intelligence, Pearson Education, 2002. M.C. Trivedi, (2019). A Classical Approach to Artificial Intelligence, Khanna Book Publishing. Nilsson, N. J. (1998). Artificial intelligence: a new synthesis. Morgan Kaufmann. Padhy, N. P. (2005). Artificial intelligence and intelligent systems (Vol. 337). Oxford: Oxford University Press. Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London. V., Rich, E., Knight, K., & Nair, S. (2009). Artificial Intelligence. Tata McGraw Hill. | | | Course
Outcomes: | Students will demonstrate a deep understanding of feedforwan etworks and the backpropagation algorithm. Students will be able to extend an existing implementation backpropagation algorithm to recognize static hand gestures in its. Students will learn digit recognition using the MNIST dataset, their knowledge of feedforward neural networks and backpropagation. Implementation of Advanced Search Strategies in Game Playing. | n of the
mages.
applying
gation. |