Name of the Programme : M.Sc. in Data Science

Course Code : CSD-511

Title of the Course : MLOps (Theory)

Number of Credits : 2(2L-0T-0P)

Contact hours : 30 hours (30L-0T-0P)

Effective from AY : 2023-24

Pre-requisites for the course	Familiarity with linear algebra, probability theory, machine leafamiliarity with python.	rning ,
Course Objectives	 This course is aimed at anyone who wishes to 1. Explore deep learning from scratch. 2. This course offers a practical hand on exploration of deep le avoiding mathematical notation, preferring instead to quantitative concepts through programming using python API 	arning, explain
Content	Unit I: Introduction to MLOps Rise of the Machine Learning Engineer and MLOps-What Is MLOps?-DevOps and MLOps-An MLOps Hierarchy of Needs-Implementing DevOps-Configuring-Continuous Integration with GitHub Actions-DataOps and Data Engineering-Platform Automation-MLOps MLOps Foundations-Bash and the Linux Command Line-Cloud Shell Development Environments-Bash Shell and Commands-List Files	15 hours
	Run Commands Files and Navigation-Input/output-Configuration-Writing a Script-Cloud Computing Foundations and Building BlocksGetting Started with Cloud Computing- minimalistic python revision-Descriptive Statistics and Normal DistributionsOptimization-Machine Learning Key Concepts-Doing Data ScienceBuild an MLOps Pipeline from Zero	

MLOps for Containers and Edge Devices Containers-Container Runtime-Creating a Container Running a Container-Best PracticesServing a Trained Model Over HTTP-Edge Devices-Coral Azure

Percept-TFHub-Porting Over Non-TPU Models-Containers for Managed ML Systems-Containers in Monetizing MLOps-Build Once, Run Many MLOps Workflow

Continuous Delivery for Machine Learning Models-Packaging for ML Models-Infrastructure as Code for Continuous Delivery of ML Models-Using Cloud Pipelines-Controlled Rollout of Models-Testing Techniques for Model Deployment

AutoML and Kaizen ML-Auto ML-MLOps Industrial RevolutionKaizen Versus Kaizen ML-Feature Stores-Apple's Ecosystem-Apple's AutoML: Create ML-Apple's Core ML Tools or Google's AutoML and Edge Computer Vision or Azure's AutoML or AWS AutoML-Open

Source AutoML Solutions-Ludwig-FLAML-Model Explainability

	<u> </u>	J
	Unit II:	
	Monitoring and Logging-Observability for Cloud MLOps-	
	Introduction to Logging-Logging in Python-Modifying log Levels-	
	Logging Different Applications-Monitoring and	
	Observability-Basics of Model Monitoring-Monitoring Drift with AWS	
	SageMaker-Monitoring Drift with Azure ML	
	A COUNTY COLOR	
	MLOps for AWS-Introduction to AWS-Getting Started with AWS	
	Services-MLOps on AWS-MLOps Cookbook on AWS-CLI Tools-Flask	
	Microservice-AWS Lambda Recipes-AWS Lambda-SAM Local-AWS	
	Lambda-SAM Containerized Deploy-Applying AWS Machine	
	Learning to the Real World	15
	hc	ours
	Machine Learning Interoperability-Why Interoperability Is	
	CriticalONNX: Open Neural Network Exchange-ONNX Model Zoo- Convert PyTorch into ONNX -Convert TensorFlow into ONNX-Deploy	
	ONNX to Azure-Apple Core ML-Edge Integration.	
	Building MLOps Command Line Tools and Microservices-Python	
	Packaging-The Requirements File-Command Line Tools-Creating a	
PUNIVE	Dataset Linter	
Goy No)
67 LINER	Modularizing a Command Line Tool-Microservices-Creating a	Q .
	Serverless Function-Authenticating to Cloud Functions-Building a	4
SIENA	Cloud-Based CLI-Machine Learning CLI Workflows	
The state of	Machine Learning Engineering and MLOps Case Studies)
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study/Flipped classroom	
References/	1. Gift, N., & Deza, A. (2021). Practical MLOps. "O'Reilly Media, Inc.".	
Readings	2. Gift, N., & Deza, A. (2021) Introduction to MLOps – O'Reilly Media, Inc	c.".
	China and a second	
	Integration of machine learning and software engineering for product systems	πon
	systems.	
Course	2. Automation of model development, training, and	
Outcomes	deployment processes.	
	3. Scalable and reliable infrastructure design for machine learning	
	applications.	
	4. Monitoring and maintenance of deployed machine learning systems.	

(Back to Index)