Name of the : M.Sc. in Data Science

Programme

Course Code : CSD-524

Title of the Course : Regression Analytics and

Predictive Models

Number of Credits : 2 (2L-2T-0P)

Contact hours : 60 hours (30L-30T-0P)

Effective from AY : 2023-24

Pre- requisites for	Probability Theory and Distributions
the Course	Violence To V
	Develop an understanding of regression analysis and model building.
	2. Provide the ability to develop relationship between
Course	variables
Objectives	3. Investigate possible diagnostics in regression
ACONT C	techniques
2/10/00	4. Formulate feasible solutions using a regression model
1 0000	for real-life problems.

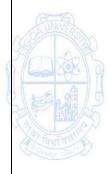
Unit 1:

Simple Regression Analysis

Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results.

Multiple Regression Analysis

Content (Theory) Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of over fitting of a model, comparing two regression model, prediction with multiple regression equation.

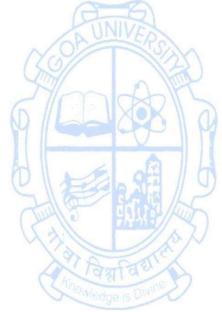

Fitting Curves and Model Adequacy Checking

Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.

Transformation techniques

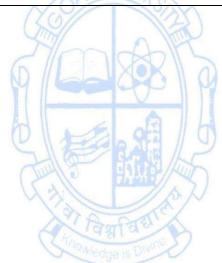
Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.

15 hours



	<u> </u>	
	Unit 2:	
	<u>Multicollinearity</u>	
	Introduction, sources of multicollinearity, effects of	
	multicollinearity. Multicollinearity diagnostics: examination of	
	correlation matrix, variance Inflation factors (VIF), Eigen system	
	analysis of X1X. Methods of dealing with Multicollinearity:	
	collecting additional data, model re- specification, and ridge	
	regression.	
	Generalized Linear Models	
	Generalized linear model: link functions and linear predictors,	15 hours
	parameter estimation and inference in the GLM, prediction and	15 Hours
	estimation with the GLM, Residual Analysis, and concept of over	
	dispersion.	
	Model building and Nonlinear Regression	
	Variable selection, model building, model misspecification. Model	
	validation techniques: Analysis of model coefficients, and predicted	
	values, data splitting method. Nonlinear regression model,	
	nonlinear least squares, transformation to linear model, parameter	
0.0	estimation in nonlinear system, statistical inference in nonlinear	
NOT TO	regression.	
Content for Tutorial Slots:	1. Linear Regression	2 hours
	2. Minimum Least Square Method	2 hours
	3. Calculating coefficients values	2 hours
	4. Ascombe's Quartet	2 hours
	5. Regression Equations- x on y & y on x	2 hours
	6. Predicting mom's height based on daughter's height	2 hours
	7. Regression-Solved problem-2	2 hours
	8. Probable Error- Calculating correlation coefficient of POPULATION	2 hours
	9. Predictive modelling project for credit card fraud detection	4 hours
	Any two Projects from below -	

10. Predictive modeling project for customer value prediction				
11. Predictive modeling project for stock market forecasting			5 hours	
12. Predictive modeling project bankruptcy prediction	for	corporate	5 hours	



Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study/Flipped classroom
References/ Readings	 Draper, N. R., & Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons. Johnson, R., & Wichern, D. (2007). Applied Multivariate Statistical Analysis, PHI Learning Pvt. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons. Pardoe, I. (2020). Applied regression modeling. John Wiley & Sons.
Course Outcomes	 Develop in-depth understanding of the linear and nonlinear regression model. Demonstrate the knowledge of regression modelling and model selection techniques. Examine the relationships between dependent and independent variables. Estimate the parameters and fit a model.

