Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-503 Title of the Course: Algorithms and Data Structure Lab Number of Credits: 2 (0L+0T+2P) Effective from AY: 2023-24

Litective itom At. 2		
<u>Prerequisites</u> <u>for the</u>	Programming in Python	
course:		
Objectives:	The aim of the course is to introduce the fundamental concept of da	ta structures
	and to emphasize the importance of data structures in developing a	nd
	implementing efficient algorithms. It provides an exposure to variou	us data
	structures and algorithm analysis including lists, stacks, queues, tree	es. and
	various sorting and searching algorithms.	
Content:	Object-Oriented Design Goals, Object-Oriented Design Principles.	
	1. The programming assignment should introduce and enforce the	3 hours
	concepts of encapsulation, polymorphism and Inheritance.	
	ADT Specifications and Implementation of following basic data	
	structures	
	2. Singly Linked Linear Lists	3 hours
	3. Singly Linked Circular Lists	2 hours
	4. Doubly Linked Linear Lists	2 hours
	5. Doubly Linked circular Lists	2 hours
	6. Stack using linked list	2 hours
	7. Queue using linked list	2 hours
	ADT Specifications and Implementation of following non-linear	4 hours
	data structures	
	8. Binary Trees	
	9. Binary Search Trees	3 hours
	10. AVL Trees	3 hours
	11. B-Trees and its variants	3 hours
	Application of stack	3 hours
	12. Program to convert the given infix expression to postfix	
	expression using stack	
	13. Program to evaluate a postfix expression using stack.	2 hours
	14. Program to traverse a binary tree in the following way: Pre-	3 hours
	order, In-order, Post-order	
	Applications of Binary Trees	2 hours
	15. Write a program to implement Huffman encoding using Binary	
	tree.	
	16. Write a program to create a binary tree for the given infix	2 hours
	expression.	
	Applications of AVL Trees	
	17. Write a program that reads a list of names and telephone	
	number from a text file and inserts them into an AVL tree. Write a	3 hours
	function to allow the user to search the tree. Searching and	
	sorting	
	18. Program to implement Binary search technique using Iterative	3 hours
	method and Recursive methods.	
	19. Programs to implement following sorting algorithm- Bubble	3 hours
	sort, Selection sort, Insertion sort, Quicksort, Merge sort and	
	Heap sort	
	Implementation of Dynamic programming	4 hours
	20. Assembly line scheduling	

	21. Matrix-chain multiplication	3 hours	
	Implementation of Greedy algorithms	3 hours	
	22. Prim"s Algorithm		
	23. Kruskal"s Algorithm		
Pedagogy:	Lectures/Practical/ tutorials/assignments/self-study		
References/R	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed. Fundamentals of data		
<u>eaungs.</u>	 Benjamin Baka, Basant Agarwal, "Hands on Data Structure and Algorithms with Python", Second Edition, O"Reilly, 2018 		
	3. Cormen Thomas, L. Charles, R. Ronald, S. Clifford, "Int Algorithms", Second Edition, EEE, PHI.	troduction to	
	 Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson Education India, 2011. 		
	5. Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-I	Hill.	
Course	1. Implement common data structures such as lists, stacks, queue	s, graphs, and	
Outcomes:	binary trees for solving programming problems.		
	2. Identify and use appropriate data structures in the context of a solution to a		
	given problem.		
	3. Learn to understand the implementation issues		
	4. Overall learn the foundation required for programming		