Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-506 Title of the Course: Data Science Fundamentals

Number of Credits: 2(2L+ 0T+ 0P)

Effective from AY: 2023-24

Prerequisites for the course	Statistics and Probability theory and Python Programming	
<u>Objectives</u>	To get started with basics of Data Science and learn all aspects of	
Objectives	To get started with basics of Data Science and learn all aspects of Data Science in its entirety	
Content	Introduction: Typology of problems - Data science in a big data	4 hours
	world: Benefits and uses of data science and big data-Facets of	
	data-The data science process-The big data ecosystem and data	
	science-The data science process: Overview of the data science	
	process- Defining research goals and creating a project charter-	
	Retrieving data-Cleansing, integrating, and transforming data-	
	Exploratory data analysis-Build the models- Presenting findings	
	and building applications on top of them.	
	Mathematics for Data science -	
	Importance of linear algebra, statistics and optimization from a	8 hours
	data science perspective; Structured thinking for solving data	
	science problems.	
	Linear Algebra: Matrices and their properties (determinants,	
	traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix	
	factorizations; Inner products; Distance measures; Projections;	
	Notion of hyperplanes; half-planes.	
	Probability, Statistics and Random Processes: Probability theory	3 hours
	and axioms; Random variables; Probability distributions and	
	density functions (univariate and multivariate); Expectations and	
	moments; Covariance and correlation; Statistics and sampling	
	distributions; Hypothesis testing of means, proportions, variances	
	and correlations; Confidence (statistical) intervals; Correlation	
	functions; White-noise process. Data clearing (EDA)	
	Introduction to Data Science Methods: Linear regression as an	4 hours
	exemplar function approximation problem; Linear classification	
	problems-PCA	
	Handling large data on a single computer	
	The problems you face when handling large data-General	4 6 6
	techniques for handling large volumes of data-General	4 hours
	programming tips for dealing with large data sets - Case study 1:	
	Predicting malicious URLs - First steps in big data-Distributing data	
	storage and processing with frameworks Introduction to NoSQL	3 hours
	The rise of graph databases	5 110015
	Introducing connected data and graph databases	
	Introducing Neo4j: a graph database	4 hours
	Data visualization to the end user	
	Data visualization options	
	Crossfilter, the JavaScript MapReduce library	
	Creating an interactive dashboard with dc.js	
	Dashboard development tools	
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study	
References /	 Practical statistics for data science by peter bruce and andrew bruce 	100

	3. Business data science by matt taddy
	4. Elements of statistical learning by Trevor Hastie, Robert and jerome
	5. Python for data analysis
	6. Data science and big data analytics -EMC2
Course	1. Understanding of data science principles.
Outcomes	2. Proficiency in data manipulation and preprocessing.
	3. Ability to visualize and communicate data insights.
	4. Knowledge of statistical analysis and predictive modeling techniques.