Name of the Programme: M.Sc. in Artificial Intelligence Course code: CSI-507 Title of course: Data Science Fundamentals Lab Number of credits: 2(0L+0T+2P)

Effective from AY: 2023-24

Prerequisites for	Basic programming skills, Statistics	
the course		
<u>Objectives</u>	To introduce Basic process of data science, Python and Jupyter	
<u>Objectives</u>	notebooks.	
	To understanding how to manipulate and analyze uncurated	
	datasets	
	To learn basic statistical analysis and machine learning methods	
	and effectively visualize results	
Content	Jupyter and Numpy: Jupyter notebooks are one of the most	10 hours
content	commonly used tools in data science as they allow you to combine	TO HOURS
	your research notes with the code for the analysis. After getting	
	started in Jupyter, we'll learn how to use numpy for data analysis.	
	numpy offers many useful functions for processing data as well as	
	data structures which are time and space efficient.	
	Pandas: Pandas, built on top of numpy, adds data frames which	
	offer critical data analysis functionality and features.	10 hours
	Visualization: When working with large data sets you often need	10 hours
	5 5 7	TO HOURS
	to visualize your data to gain a better understanding of it. Also, when you reach conclusions about the data, you'll often wish to	
	use visualizations to present your results.	
	Mini Project: With the tools of Jupyter notebooks, numpy, pandas,	
	and Visualization, you're ready to do sophisticated analysis on	10 hours
	your own. You'll pick a dataset we've worked with already and	10 110013
	perform an analysis for this first project.	
	Machine Learning: To take your data analysis skills one step	10 hours
	further, we'll introduce you to the basics of machine learning and	10 110013
	how to use sci-kit learn - a powerful library for machine learning.	
	Working with Text and Databases: You'll find yourself often	5 hours
	working with text data or data from databases. This week will give	5 110015
	you the skills to access that data. For text data, we'll also give you	
	a preview of how to analyze text data using ideas from the field of	
	Natural Language Processing and how to apply those ideas using	
	the Natural Language Processing and now to apply those ideas using the Natural Language Processing Toolkit (NLTK) library.	
	Mini-Project	5 hours
Pedagogy	Tutorials/ Lab assignments/ Project work	5 110013
<u>References/</u>	1. Practical statistics for data science by Peter Bruce and Andrew Br	
Readings	2. Naked statistics by Charles Wheelon	uce
<u>Neaungs</u>	3. Business data science by Matt Taddy	
	 Elements of statistical learning by Trevor Hastie, Robert and jeroi 	mo
	5. Python for data analysis	
	6. Data science and big data analytics -EMC2	
Course	1. Application of data science techniques to real-world problems.	
Outcomes	 Application of data science techniques to real-world problems. Proficiency in data acquisition and preprocessing. 	
<u>Succines</u>	3. Ability to perform exploratory data analysis.	
	4. Building and evaluating predictive models.	