Semester II Name of the Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-508

Title of the Course: Deep Learning

Number of Credits: 2(2L-0T-0P)

Effective from AY: 2023-24

Prerequisites for	Programme prerequisites	
the course		
Objectives	To study the basics of Neural Networks and their various variants	
	such as the Convolutional Neural Networks and Recurrent Neural	
	Networks, to study the different ways in which they can be used to	
	Solve problems in various domains such as computer vision,	
Contont	Speech and NEP.	1 hours
Content	Logic Percentron Learning Algorithm and Convergence	THOUS
	Multilaver Percentrons (MIPs) Representation Power of MIPs	1 hours
	Sigmoid Neurons, Gradient Descent	Inours
	Feedforward Neural Networks. Representation Power of	2 hours
	Feedforward Neural Networks, Backpropagation	
	Gradient Descent(GD), Momentum Based GD, Nesterov	2 hours
	Accelerated GD, Stochastic GD, Adagrad, AdaDelta, RMSProp,	
	Adam,AdaMax,NAdam, learning rate schedulers	
	Autoencoders and relation to PCA, Regularization in autoencoders,	3 hours
	Denoising autoencoders, Sparse autoencoders, Contractive	
	autoencoders	
	Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset	3 hours
	augmentation, Parameter sharing and tying, Injecting noise at	
	Input, Ensemble methods, Dropout	2 hours
	Greedy Layer Wise Pre-training, Better activation functions, Better	3 nours
	Learning Vectorial Representations of Words Convolutional	3 hours
	Neural Networks LeNet AlexNet 7F-Net VGGNet GoogleNet	5 110013
	ResNet	
	Visualizing Convolutional Neural Networks, Guided	3 hours
	Backpropagation, Deep Dream, Deep Art, Fooling Convolutional	
	Neural Networks	
	Recurrent Neural Networks, Backpropagation Through Time	3 hours
	(BPTT), Vanishing and Exploding Gradients, Truncated BPTT	
	Gated Recurrent Units (GRUs), Long Short Term Memory (LSTM)	3 hours
	Cells, Solving the vanishing gradient problem with LSTM	
	Encoder Decoder Models, Attention Mechanism, Attention over	3 hours
Dedegegy	Images, Hierarchical Attention, Transformers.	
Pedagogy	Lectures/ Tutonais/Hands-on assignments/Self-study	
References/	1. Ian Goodfellow and Yoshua Bengio and Aaron Courville. Deep Learning. An	
<u>Readings</u>	MIT Press book. 2016.	
	2. Charu C. Aggarwal. Neural Networks and Deep Learning: A Textbook. Springer.	
	2019.	
	3. Dive into Deep Learning by Ashton Zang.	
Course	Introduction to Deep Learning by Sandro Skansi. Understanding of deep learning concepts and university in learning.	
Outcomes	Inderstanding of deep learning concepts and principles. Implementation and training of deep learning models	
Outcomes	Implementation and training of deep learning models. Practical application of deep learning in various demains	
	 Fractical application of deep learning in various domains. A Evaluation and interpretation of deep learning model performance 	<u>م</u>
	4. Evaluation and interpretation of deep learning model performance.	