Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-512 Title of the Course: Reinforcement Learning Number of Credits: 2(2L-0T-0P)

Effective from AY: 2023-24

Prerequisites for	Linear algebra, multivariable calculus	
the course	Basic machine learning knowledge	
Objectives	To enable the student to understand the reinforcement learning	
	paradigm, to be able to identify when an RL formulation is	
	appropriate, to understand the basic solution approaches in RL, to	
Contont	implement and evaluate various RL algorithms.	2 has
<u>Content</u>	Review of ML fundamentals – Classification, Regression. Review of	2 hrs
	probability theory and optimization concepts.	2.1
	RL Framework; Supervised learning vs. RL; Explore-Exploit	2 hrs
	Dilemma; Examples.	
	MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition	2 hrs
	to full RL, Intro to full RL problem	
	Intro to MDPs: Definitions , Returns, Value function, Q-function.	2 hrs
	Bellman Equation, DP, Value Iteration, Policy Iteration,	2 hrs
	Generalized Policy Iteration.	
	Evaluation and Control: TD learning, SARSA, Q-learning, Monte	2 hrs
	Carlo, TD Lambda, Eligibility Traces.	
	Maximization-Bias & Representations: Double Q learning, Tabular	2 hrs
	learning vs. Parameterized, Q-learning with NNs	
	Function approximation: Semi-gradient methods, SGD, DQNs,	2 hrs
	Replay Buffer.	_
	Policy Gradients: Introduction, Motivation, REINFORCE, PG	3 hrs
	theorem, Introduction to AC methods	5 11 5
	Actor-Critic Methods, Baselines, Advantage AC, A3C Advanced	3 hrs
	Value-Based Methods: Double DQN, Prioritized Experience Replay,	51115
	Dueling Architectures, Expected SARSA.	
	Advanced PG/A-C methods: Deterministic PG and DDPG, Soft	4 hrs
		4 1115
	Actor-Critic (SAC) HRL: Introduction to hierarchies, types of	
	optimality, SMDPs, Options, HRL algorithms POMDPS: Intro,	
	Definitions, Belief states, Solution Methods; History-based	
	methods, LSTMS, Q-MDPs, Direct Solutions, PSR.	
	Model-Based RL: Introduction, Motivation, Connections to	4 hrs
	Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-	
	style models, Latent variable models, Examples, Implicit MBRL.	
	Case study on design of RL solution for real-world problems.	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / flip classroom/	
	presentations.	
References /	1. Reinforcement learning -Introduction by Richard sutton and A	ndrew barto,
Readings	2nd edition, MIT press.	
	2. Algorithms for reinforcement learning by Csaba Szepesvari, Rona	ld Brachman,
	et al,2010.	,
Course	1.Solid understanding of reinforcement learning concepts, theories, and	
Outcomes	algorithms.	
	2.Ability to implement and apply reinforcement learning algorithms to real-world	
	problems.	
	3.Evaluation and analysis of reinforcement learning systems.	
	4.Critical thinking skills, staying updated with current research and the	rends
	+.Chucai thinking skins, staying upuated with current research and t	enus.