Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-513 Title of the Course: Reinforcement Learning Lab Number of Credits: 2(0L-0T-2P)

Effective from AY: 2023-24

Effective from AY: 2023-24		
Prerequisites for	Linear algebra, multivariable calculus , Basic machine learning	
the course	knowledge and programming background.	
Objectives	To understand the theory by carrying out the lab assignment	
	based on the key ideas of reinforcement learning.	
<u>Content</u>	1. RL task formulation (action space, state space, environment	7 hours
	definition)	
	2. Tabular based solutions (dynamic programming, Monte Carlo,	7 hours
	temporal-difference)	
	3. Function approximation solutions (Deep Q-networks)	7 hours
	4. Policy gradient from basic (REINFORCE) towards advanced	7 hours
	topics (proximal policy optimization, deep deterministic policy	
	gradient, etc.)	
	5. Model-based reinforcement learning	7 hours
	6. Imitation learning (behavioral cloning, inverse RL, generative	7 hours
	adversarial imitation learning)	
	7. Meta-learning	8 hours
	8. Multi-agent learning, partial observable environments	10 hours
<u>Pedagogy</u>	Lab assignments/ mini project	
<u>References/</u>	1. Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An	
<u>Readings</u>	introduction", Second Edition, MIT Press, 2019.	
	2. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810	.06339
	(2018).	
	3. Wiering, Marco, and Martijn Van Otterlo. "Reinforcement learning."	
	Adaptation, learning, and optimization 12 (2012): 3.	
	4. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern	
	approach."Pearson Education Limited, 2016.	
	5. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT	
	press, 2016.	
	6. David Silver's course on Reinforcement Learning (link).	
<u>Course</u>	1. Practical implementation skills of reinforcement learning algorithms.	
<u>Outcomes</u>	2. Ability to design and analyze experiments for evaluating reinforcement	
	learning systems.	
	3. Contribution to the field through novel research or innovative applications.	
	4. Improved collaboration and communication skills within a resear	ch lab setting.