Name of the Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-522

Title of Course: Computer Vision Number of Credits: 4 (2L-2T-0P) Effective from AY: 2023-24

Effective from AY:	2023-24	
Prerequisites for	Python programming, linear algebra and calculus, array	
the course	manipulation	
<u>Objectives</u>	The aim of the course is to introduce the fundamental concept of	
	computer vision and to emphasize the importance of computer	
	vision in developing and implementing different projects	
Theory:	Image Formation - Geometric Camera Models - Light and Shading -	6 hours
	Color - Early Vision: Just One Image	
	Linear Filters - Local Image Features - Texture - Early Vision: Multiple Images - Stereopsis - Structure from Motion - Mid-Level Vision	6 hours
	Segmentation by Clustering - Grouping and Model Fitting- Tracking - High-Level Vision- Registration- Smooth Surfaces and Their Outlines - Range Data - Learning to Classify - Classifying Images	6 hours
	Detecting Objects in Images- Topics in Object Recognition Applications	6 hours
	Image-Based Modeling and Rendering - Looking at People- Image Search and Retrieval - Optimization Techniques	6 hours
Tutorial	Open CV setup and demo on getting started up.	3 hours
session/Practic	The second was a second on Second second who	
al assignments:	2. Image representation and image manipulation using open CV	3 hours
	3. Image storage and manipulation.	3 hours
	4. Photographs and perspective projections	3 hours
	5. Gaussian smoothings	3 hours
	6. Canny edge detection	3 hours
	7. Corner detection	3 hours
	8. Gabor filters	3 hours
	9. Hough transformation for lines	3 hours
	10. Hough transformation for circles	3 hours
Pedagogy:	lectures/Practical/ tutorials/assignments/self-study	
References/R	1. Computer Vision: Algorithms And Applications by Richard Szeliski	
eadings:	https://www5.cs.fau.de/lectures/ss-14/computer-vision-cv/mputer-	-vision-
	exercises/index.html	
	Read more at: https://viso.ai/computer-vision/computer-vision-books/	
	2. Computer Vision: Models, Learning, and Inference	
	Read more at: https://viso.ai/computer-vision/computer-vision-books/	
	3. Modern Computer Vision with PyTorch by Yeshwanth Reddy and V	√ Kishore
	Ayyadevara	

	Read more at: https://viso.ai/computer-vision/computer-vision-books/	
	4. Learning OpenCV 4 Computer Vision with Python 3	
	Read more at: https://viso.ai/computer-vision/computer-vision-books/	
Course	1. Acquire and process raw image data and Relate image data to 3D scene	
Outcomes:	structures.	
	2. Know the concepts behind and how to use several model-based object	
	representations, and critically compare them.	
	3. Know many of the most popularly used current computer vision techniques by	
	carrying out suitable lab experiments listed above	
	4. Undertake computer vision work in MATLAB or python OpenCV	