Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-523 Title of Course: Robotics Number of Credits: 4 (2L-2T-0P) Effective from AY: 2023-24

ffective from AY: 2		1
Prerequisites for	Linear Algebra, Set Theory, Complex Analysis, Matrices	
the course		
<u>Objectives</u>	 To summarize and analyze the fundamentals of robotics. To introduce students the kinematics and dynamics of robots. To elucidate students the types of motion control. To familiarize students with the basic techniques of designing the robots. 	
Theory:	Module:1 Fundamentals Introduction – Components, Degrees of Freedom, Joints,	5 hours
	Coordinates, Mechanisms, Controller. Module:2 Kinematics Desition and Orientation of Okiesta Coordinate Transformation	5 hours
	Position and Orientation of Objects, Coordinate Transformation, Joint Variables and Position of End Effector, Inverse Kinematics Problem, Jacobian Matrix, Statics and	
	Jacobian Matrices.	5 hours
	Module:3 Dynamics Lagrangian and Newton-Euler Formulations, Derivation of Dynamics Equations Based on Lagrangian	
	Formulation, Derivation of Dynamic Equations Based on Newton- Euler, Formulation, Use of Dynamics Equations and Computational Load, Identification of Manipulator	
	Dynamics. Module:4 Manipulability Manipulability Ellipsoid and Manipulability Measure, Best	5 hours
	Configurations of Robotic Mechanisms from Manipulability Viewpoint, Various Indices of Manipulability, Dynamic Manipulability.	
	Module:5 Position Control Generating a Desired Trajectory, Linear Feedback Control, Two- Stage Control by Linearization and Servo	5 hours
	Compensation, Design and Evaluation of Servo Compensation, Decoupling Control, Adaptive Control.	
	Module:6 Force Control Impedance Control - Passive-Impedance Method, Active- Impedance Method-One- Degree-of- Freedom	3 hours
	Case, Active-Impedance Method-General Case.	
	Module:7 Hybrid Control Hybrid Control - Hybrid Control via Feedback Compensation, Dynamic Hybrid Control.	2 hours
Practicals to be	1. Assignment on introduction to Robot Configuration.	3 hours
discussed and	2. Demonstration of Robot with 2 dof, 3 dof, 4 dof etc.	2 hours
implemented during the	 Two assignments on programming the Robot for some simple real life applications. 	5 hours
-	 Two assignments on programming the Robot for applications in Val II. 	5 hours
	5. Two programming exercises for robots.	5 hours
	6. Two case studies of applications in industry.	5 hours
	7. Exercise on robotic simulation software.	5 hours

Pedagogy	Lectures/Practical/ Tutorials/Assignments	
References/	Text Book(s)	
Readings	1. Tsuneo Yoshikawa, "Foundations of Robotics Analysis and Control", The MIT	
	Press Cambridge, 1990.	
	2. Saeed B Niku, "Introduction to Robotics Analysis, Control, Applications", 3rd	
	Edition, Wiley, 2020.	
	Reference Books	
	1. Robert J. Schilling, "Fundamentals of Robotics, Analysis and Control", Prentice	
	Hall India, 2003.	
	2. John J. Craig, "Introduction to Robotics, Mechanics and Control", 3rd Edition,	
	Pearson Prentice Hall, 2005.	
Course	After the completion of the course, student will be able to:	
<u>Outcomes</u>	1. Comprehend, classify and analyze the fundamentals of robotics.	
	2. Analyze the kinematics in robots.	
	3. Gain knowledge about the dynamics of robots.	
	4. Elucidate the motion control in robotics.	