Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-526

Title of the Course: Mathematics for Computer Vision and Robotics

Number of Credits: 4(2L+2T+P)

Effective from AY: 2023-24

Prerequisites for	Linear Algebra, Probability and Statistics, Signal Processing	
the course		
Objectives	To understand basic concepts of linear algebra and to illustrate its	
	power and utility through applications to computer vision.	
	To apply the concepts of vector spaces, linear transformations,	
	matrices and inner product spaces in engineering.	
	To understand the concepts of curves and surfaces and solving	
	linear programming problems that arise in engineering.	
<u>Theory:</u>	Vectors and Matrices Points, vectors, vector spaces(Rn only), lines	3 hours
	and planes as subspaces -Matrices and four fundamental spaces-	
	Gaussian elimination.	
	Factorization of Matrices LU factorizations-Cholesky	6 hours
	decomposition – eigenvalues and eigenvectors – SVD - Applications	
	of the SVD Solving Linear Systems and the Pseudoinverse -	
	Principal Components Analysis (PCA)	
	Linear transformations Linear transformations(R^n only) – Basic	6 hours
	properties-invertible linear transformation - matrices of linear	
	transformations.	
	Geometry in Linear Transformation Projections, Rotations and	6 hours
	reflection and applications	
	Orthogonality Dot products and inner products(R^n only) –	3 hours
	lengths and angles of vectors –orthogonal matrices- Gram Schmidt	
	orthogonalizations - QR factorization- orthogonal projections-	
	Least Square solutions	
	Differential geometry Introduction to differential geometry -	3 hours
	curves-curvature-torsion-osculating plane –surfaces	
	Linear programming Linear programming – Formulation of LPP-	3 hours
	Graphical method - Simplex method	
Assignments to	Assignment 1- Getting to Know the Python math Module,	- * 0 04
be discussed	Constants of the math Module:Pi, Tau, Euler's Number, Infinity,	/*3=21
during Tutorial	Not a Number (NaN) and Arithmetic Functions, Find Factorials With	hours
Slots:	Python factorial(), Find the Celling Value with cell(), Find the Floor	
	Value With floor(), Truncate Numbers With trunc(), Find the	+ 9 hours for
	Closeness of Numbers with Python Isclose()	a IVIINI Duoiset
	Assignment 2. Device Expetience Coloulate the Device of a Number	Project
	Assignment-2 - Power Functions, Calculate the Power of a Number	
	Example With exp() Logarithmic Exponent With exp(), Practical	
	Example with exp(),Logarithmic Functions, Python Natural Log	
	Natural Log	
	Assignment-3 -Other Important math Module Functions Calculate	
	the Greatest Common Divisor. Calculate the Sum of Iterables.	
	Calculate the Square Root. Convert Angle Values. Calculate	
	Trigonometric Values	
	Assignment -4 -New Additions to the math Module in Python	
	3.8.cmath vs math, NumPy vs math,	

	Assignment -5 -Calculating combinations and permutations using factorials, Calculating the height of a pole using trigonometric functions, Calculating radioactive decay using the exponential function, Calculating the curve of a suspension bridge using hyperbolic functions, Solving quadratic equations
	Assignment - 6 -Simulating periodic functions, such as sound and
	light waves, using trigonometric functions,
	Assignment -7 -Vector algebra in python, Physical Quantities, Vector and Scalars, Representation of vectors, Types of Vectors, Operations on Vectors, Section Formula, Concept of Euclidean Distance between two vectors,
Pedagogy	Lectures/ Lab Assignments/ Seminar Presentations /Project Work
References/	1. Linear Algebra, Jin Ho Kwak and Sungpyo Hong, Second edition Springer, 2004.
Readings	2. Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal,
	Cheng Soon Ong, Cambridge University Press, 2020.
	3. Operations Research principles and applications, G.Srinivasan, 3rd edition, PHI
	learning, 2017, Differential Commetry of Curves and Surfaces: Revised and Undeted Second
	4. Differential Geometry of Curves and Surfaces. Revised and Opdated Second Edition Manfredo P. do Carmo, Dover publications 2016
	5. Linear Algebra and Optimization with Applications to Machine Learning -
	Volume I.
	6. Linear Algebra for Computer Vision, Robotics, and Machine Learning, Jean H.
	Gallier, Jocelyn Quaintance, World Scientific Publishing Company, 2020.
	7. Basics of Matrix Algebra for Statistics with R, Nick Fieller, CRC press, 2016.
	8. Introduction to Linear Algebra, Gilbert Strang, 5th Edition, Cengage Learning
	9. Modern Mathematics And Applications in Computer Graphics And Vision,
	10 Computer Vision: A Modern Approach, Forsyth and Ponce, 2nd Edition Pearson
	2012.
<u>Course</u>	At the end of this course the students are expected to learn
Outcomes	1. The abstract concepts of matrices and system of linear equations using
	decomposition methods and applications in engineering
	2. Understand the geometry behind linear transforms which is used in computer
	graphics, Understand the concepts of orthogonality through linear algebra
	3. Understating properties curves and surfaces and Solving linear programming
	problems arise in engineering
	4. Solving problems in Linear algebra, linear programming and differential
	geometry using matpionib or Fython.