Name of the Programme: M.Sc. in Artificial Intelligence Course Code: CSI-527 Title of the Course: Soft Computing Number of Credits: 4 (2L+2T+0P) Effective from AY: 2023-24

Prerequisites for	Machine Learning, Statistics	
the course		
<u>Objectives</u>	The objective of this course is to introduce methods for handling imprecise and uncertain data using Rough sets, Neuro Fuzzy Systems and foster their abilities in designing and implementing optimal solutions for real-world and engineering problems using derivative free optimization techniques.	
Content	Introduction to Soft Computing Soft Computing Overview – Uncertainty in data, Hard vs Soft Computing	3 hours
	Neural Networks Introduction, RBF Networks, Self-Organizing Map, Boltzmann Machines, Convolutional Neural Networks.	2 hours
	Fuzzy Systems Fuzzy Sets, Fuzzy Relations, and Membership functions, Properties of Membership functions, Fuzzification and Defuzzification.	5 hours
	Fuzzy logic Fuzzy Rule based systems, Fuzzy Decision making, Fuzzy Classification, Fuzzy CMeans Clustering.	5 hours
	Rough Sets Rough Sets – Definition, Upper and Lower Approximations, Boundary Region, Decision Tables and Decision Algorithms. Properties of Rough Sets. Rough K-means clustering, Rough	5 hours
	Optimization Techniques Introduction, Genetic Algorithm, Memetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Frog-Leaping.	5 hours
	Hybrid Systems GA Based Back Propagation Networks, Fuzzy Back Propagation Networks, Evolutionary Ensembles	5 hours
Assignments	List of Assignments:	
and Mini Project Discussions	 To demonstrate the working of Hebbian learning rule To demonstrate the working of perceptron learning rule To demonstrate the working of Delta learning rule 	12 * 2 = 24 hours
during the Tutorial Slots:	 To demonstrate the working of Delta learning rule To demonstrate the working of Widrow-Hoff learning rule 	+ 6
ratonal Slots.	 To demonstrate the working of Radial basis function network To demonstrate the working of Learning vector quantization To demonstrate the working of Self-Organizing maps To demonstrate the working of Recurrent neural networks 	hours for a Mini Project
	 To demonstrate the working of Fuzzy inference system To demonstrate the working of Genetic algorithm To demonstrate the working of Particle Swarm Optimization To demonstrate the working of Ant Colony Optimizations and TSP 	,

<u>Pedagogy</u>	Lectures / Assignments / Quiz / Mini Project / Seminar Presentations		
<u>References/</u>	Main Readings		
Readings	1. S.N. Sivanandham and S.N.Deepa, "Principles of Soft Computing", 2nd Edition,		
	Wiley Publications.		
	2. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", John		
	Wiley & Sons, 2007.		
	3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures,		
	Algorithms And Applications", Pearson, 1993.		
	4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008.		
	Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition, Wiley.		
Course	1. Have a general understanding of soft computing methodologies, to deal with		
<u>Outcomes</u>	imprecise and uncertain data		
	2. Develop computational neural network models for some simple biological		
	systems;		
	3. Develop fuzzy models for engineering systems, particularly for control systems;		
	4. Apply derivative free optimization methods to solve real world problems		
	5. Demonstrate some applications of computational intelligence.		