Name of the Programme: M. A. Economics

Course Code: ECO-504 Title of the Course: Mathematics for Economic Analysis

Number of Credits: 4

Effective from AY: 2022-23

<u>Prerequisites for</u> the course:	Graduate in any discipline	
<u>Objective:</u>	To learn the mathematical tools and concepts that aid in analysing economic optimisation.	Contact Hours
<u>Content:</u>	Module 1:	15
	Vectors and Matrices	
	Vectors, Vector Spaces, Linear Dependence, Basis. Elementary operations with Matrices, Equivalence, Determinants, Inverse of Matrix, Rank of a Matrix, Cramer's Rule. Introduction to Input-Output techniques.	
	Module 2:	
	Set Theory: Sets, Set operations, Finite and Infinite Sets, Non- denumerable sets, Cartesian Product, Relations, Functions, Ordered Sets, Linear Point Sets. Functions & Limits:	15
	Limit of a function, continuity, Necessary and sufficient conditions. Module 3:	
	Differentiation: Rules of differentiation: Total derivatives and Partial derivatives. Maxima and minima, points of inflexion.	15
	Integration: Reimann integral, Fundamental Theorem of the calculus, Techniques of integration and Definite integrals. Applications in economics: Theory of the firm (cost) & Growth	
	Module 4:	
	Optimisation: Unconstrained & Constrained Application to economics: cost curves, demand curves, Theory of the consumer and Theory of the Firm under Perfect and Imperfect Competition.	15

<u>Pedagogy</u> :	 Chalk and talk aided by ICT enabled lectures PC lab exercises Assignments and presentations Group activity MOOC (or similar) Component 	
<u>References/</u> <u>Read ings</u>	Core reading C1. K. Sydsaeter, P. Hammond, Strom and Carvajal (2018), Essentials of Mathematics for Economics Analysis, Pearson. Fifth Edition Additional References A1. Simon, Carl P. & L. Blume (2018) Mathematics for Economists W.W. Norton, New York A2. A.C. Chiang and K. Wainwright (2017) Fundamental Methods in Mathematical Economic McGraw Hill, New York	
<u>Learning</u> Outcomes	Solve problems involving optimisation in Microeconomics inclduing Utility and Production theory	