Programme: M. Sc. Biotechnology

Course Code: GBC-280Title of the Course: Genetic Engineering

Number of Credits: 3

Effective from AY: 2019-2020

Prerequisites for the	Course in Molecular Biology	
	Course in Molecular Biology	
<u>course:</u>		
Objective:	To explain the various tools that are used in genetic	
	engineering to create recombinants and its applications in	
	biological research as well as in biotechnology industries.	
Content:	MODULE I	
	 Enzymes used in Molecular biology: restriction endonucleases and methylases; DNA ligase, Klenow enzyme, T4 DNA polymerase, polynucleotide kinase, alkaline phosphatase; nucleases, Topoisomerase, thermostable polymerase, Terminal deoxynucleotide polymerase and others. cohesive and blunt end ligation; linkers; adaptors; homopolymer tailing; labelling of DNA: nick translation, Random priming, radioactive and non-radioactive probes, Hybridization techniques: northern, southern, southwestern and far-western and colony hybridization, fluorescence <i>in situ</i> hybridization. Plasmids; Bacteriophages; M13mp vectors; pUC19 and pBluescript vectors, phagemids; Lambda vectors; Insertion and Replacement vectors; Cosmids; Artificial chromosome vectors (YACs; BACs); Principles for maximizing gene expression vectors; Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Is and Ri as vectors, yeast vectors, shuttle vectors. 	12 hours

 MODULE II Principles of PCR: primer design; fidelity of thermostable enzymes; DNA polymerases; types of PCR – multiplex, nested; real time PCR, touchdown PCR, hot start PCR, colony PCR, cloning of PCR products; T - vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; Sequencing methods; enzymatic DNA sequencing; chemical sequencing of DNA; automated DNA sequencing; chemical sequencing; chemical synthesis of oligonucleotides; mutation detection: SSCP, DGGE, RFLP. Insertion of foreign DNA into host cells; transformation, electroporation, transfection; construction of libraries; isolation of mRNA and total RNA; reverse transcriptase and cDNA synthesis; cDNA and genomic libraries; construction of microarrays – genomic arrays, cDNA arrays and oligo arrays; study of protein - DNA interactions: electrophoretic mobility shift assay; DNase I footprinting; methyl interference assay, chromatin immunoprecipitation; protein-protein interactions using yeast two-hybrid system; phage display. MODULE III Gene silencing techniques; introduction to siRNA; siRNA technology, Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems <i>e.g.</i>, fruit files (<i>Drosophila</i>), worms (<i>C. elegans</i>).Frog (xenopus), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting; creation of transgenic and knock-out mice; disease]
 thermostable enzymes; DNA polymerases; types of PCR – multiplex, nested; real time PCR, touchdown PCR, hot start PCR, colony PCR, cloning of PCR products; T - vectors; proof reading enzymes; PCR based site specific mutagenesis; PCR in molecular diagnostics; viral and bacterial detection; Sequencing methods; enzymatic DNA sequencing; chemical sequencing of DNA; automated DNA sequencing; RNA sequencing; chemical synthesis of oligonucleotides; mutation detection: SSCP, DGGE, RFLP. Insertion of foreign DNA into host cells; transformation, electroporation, transfection; construction of libraries; isolation of mRNA and total RNA; reverse transcriptase and cDNA synthesis; cDNA and genomic libraries; construction of microarrays – genomic arrays, cDNA arrays and oligo arrays; study of protein - DNA interactions: electrophoretic mobility shift assay; DNase I footprinting; methyl interference assay, chromatin immunoprecipitation; protein-protein interactions using yeast two-hybrid system; phage display. MODULE III Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems <i>e.g.</i> fruit flies (<i>Drosophila</i>), worms (<i>C. elegans</i>).Frog (xenopus), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting; 	MO	DDULE II	
Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems <i>e.g.</i> fruit flies (<i>Drosophila</i>), worms (<i>C. elegans</i>),Frog (xenopus), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting;	Print the PC PC pro PC mo Sec che seq olig RF Inse tran cor RN cD mic arra elec DN chr inte	nciples of PCR: primer design; fidelity of rmostable enzymes; DNA polymerases; types of R – multiplex, nested; real time PCR, touchdown R, hot start PCR, colony PCR, cloning of PCR ducts; T - vectors; proof reading enzymes; R based site specific mutagenesis; PCR in lecular diagnostics; viral and bacterial detection; quencing methods; enzymatic DNA sequencing; mical sequencing of DNA; automated DNA uencing; RNA sequencing; chemical synthesis of gonucleotides; mutation detection: SSCP, DGGE, LP. ertion of foreign DNA into host cells; nsformation, electroporation, transfection; astruction of libraries; isolation of mRNA and total (A; reverse transcriptase and cDNA synthesis; NA and genomic libraries; construction of croarrays – genomic arrays, cDNA arrays and oligo ays; study of protein - DNA interactions: ctrophoretic mobility shift assay; lase I footprinting; methyl interference assay, omatin immunoprecipitation; protein-protein eractions using yeast two-hybrid system; phage	12 hours
siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; creation of transgenic plants; debate over GM crops; introduction to methods of genetic manipulation in different model systems <i>e.g.</i> fruit flies (<i>Drosophila</i>), worms (<i>C. elegans</i>),Frog (xenopus), fish (zebra fish) and chick; Transgenics - gene replacement; gene targeting;	мо	DDULE III	
model; introduction to genome editing by CRISPR- CAS with specific emphasis on Chinese and American clinical trials; Cloning genomic targets into CRISPR/Cas9 plasmids; electroporation of Cas9 plasmids into cells;12 hours	siR siR sile cre intr diff wo and Tra cre mo CA clir Clo	NA technology; Micro RNA; construction of NA vectors; principle and application of gene encing; gene knockouts and gene therapy; ation of transgenic plants; debate over GM crops; roduction to methods of genetic manipulation in ferent model systems <i>e.g.</i> fruit flies (<i>Drosophila</i>), rms (<i>C. elegans</i>),Frog (xenopus), fish (zebra fish) I chick; insgenics - gene replacement; gene targeting; ation of transgenic and knock-out mice; disease del; introduction to genome editing by CRISPR- S with specific emphasis on Chinese and American nical trials; oning genomic targets into CRISPR/Cas9 plasmids;	12 hours

r		1
	purification of DNA from Cas9 treated cells and evaluation of Cas9 gene editing; <i>in vitro</i> synthesis of single guide RNA (sgRNA); using Cas9/sgRNA complexes to test for activity on DNA substrates; evaluate Cas9 activity by T7E1 assays and DNA sequence analysis; Applications of CRISPR/cas9 technology	
Pedagogy:	lectures/ tutorials/assignments/self-study	
References/Readings	 Biotechnology. (1998). Singh, B.D. Genetic engineering: principles & practice (1996). Mitra, S. Principles of gene manipulations (1996) Old,R.W. & Primrose,S.B. An introduction to Genetic engineering.(1994). Nicholl,D.S.T. Recombinant DNA. (1992). Watson et al. Genetic engineering fundamentals: An introduction to principles & applications. (1989). Kammermeyer,K. & Virginica,C. From Genes to Clones: Introduction to Gene Technology. (1987). Winnacker, E.L. Genetic engineering Vol I-VI Setlow and Halander. Genetic engineering Vol I-IV (1981). Williamson, R.(Editor). Brown, T. A. (2006). <i>Genomes</i> (3rd ed.). New York: Garland Science Pub S. Primrose, R. Twyman, B. Old, and G. Bertola (2006). <i>Principles of Gene</i> <i>Manipulation and Genomics</i>, Blackwell Publishing Limited; 7th Edition Green, M. R., & Sambrook, J. (2012). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Selected papers from Scientific Journals, particularly Nature & Science. Technical Literature from Stratagene, Promega, Novagen, New England Biolab. Introduction to Biotechnology and Genetic Engineering (2008)A.J. Nair Laxmi Publications Pvt. Ltd From Genes to Genomes: Concepts and Applications of DNA Technology 2011 by Jeremy W. Dale,Malcolm von Schantz , Nicholas Plant Wiley-Blackwell publisher 	
	19. Textbook of Biotechnology Paperback – 2017 by	

	 H.K. Das Wiley Publisher 20. Gene Cloning and DNA Analysis: An Introduction 2016 T. A. Brown Wiley-Blackwell; 7th edition 21. Applied Molecular Biotechnology: The Next Generation of Genetic Engineering (2016)Muhammad Sarwar Khan, Iqrar Ahmad Khan, Debmalya Barh. CRC press 1st Edition 	
Learning Outcomes	Given the impact of genetic engineering in modern society, students should be endowed with strong theoretical knowledge of this technology. In conjunction with the practicals in molecular biology & genetic engineering, the students should be able to take up biological research as well as placement in the relevant biotech industry.	

Programme: M. Sc. Biotechnology

Course Code: GBC-281 Title of the Course: Bioprocess Technology

Number of Credits: 3

Effective from AY: 2019-2020

Prerequisites for the	Courses inMicrobiology and Biochemistry	
<u>course:</u>		
Objective:	The objective of this course are to educate students about fundamental concepts of bioprocess technology and its related applications, thus, preparing them to meet challenges of new and emerging areas of biotechnology industry.	
Content:	MODULEI	12 hours
	Basic Principles of Biochemical Engineering and Fermentation Processes:	
	 Isolation, screening, and preservation of industrially important microbes Bioreactor designs Types of fermenters Concepts of basic modes of fermentation: batch, fed-batch and continuous Scale up fermentation processes Media formulation 	