Learning Outcomes	It will equip the student with a broad perspective of integrating physics with biology at the cellular level with detailed information to pursue a career in newly evolving and dynamic	
	fields of Neurobiology.	

Programme: M. Sc. Biotechnology Course Code: GBO-190

Title of the Course: Environment Biotechnology

Number of Credits: 2

Effective from AY: 2019-2020

		T
<u>Prerequisites for the</u>	No prerequisites required.	
course:		
Objective:	The objective of this course is to impart knowledge on	
	biotechnological applications that can be used to tackle	
	environmental issues emerging due to industrialization	
	and globalization.	
Content:		12 hours
	MODULE I	
	Environment pollution, Hazardous wastes: Definition,	
	sources and characteristics: Hazardous waste	
	categorization, generation, collection, transport, treatment	
	and disposal; Collection, segregation and transport of solid	
	wastes handling and segregation of wastes at source.	
	Collection and storage of municipal solid wastes. Solid	
	waste processing technologies. Waste water collection;	
	control and management; Waste water treatment from	12 hours
	dairy, distillery, sugar and antibiotic industries; Sewage	12 110 615
	treatment through chemical, microbial and biotech	
	techniques; Anaerobic processes; Anaerobic filters;	
	Anaerobic sludge blanket reactors.	
	MODULE II	
	Bioremediation of organic pollutants, contaminated soil,	
	ground water; Use of bacteria, fungi, plants, enzymes, and	
	GE organisms; Bioaugmentation; Macrophytes in water	
	treatment; Phytoremediation of soil metals; Bioreactors;	
	Rural biotechnology; Biocomposting; Biofertilizers;	
	Vermiculture; Organic farming; Bio-mineralization;	

	Biomass as source of energy; Biofuels; Biodisel, environmental toxicants and human health; Nano materials: their properties and influence on human health, environment,Gene mutation; Genetic testing; Genetic sensors.
Pedagogy:	lectures/ tutorials/assignments/self-study
References/Readings	 MetCalfe and Eddy Inc., Wastewater Engineering: Treatment, Disposal and Reuse", 4 th Edition, McGraw HillBook Co., 2003 Mackenzie L. Davis and David A. Cornwell, Introduction to Environmental Engineering, 4 th Edition, McGraw Hill Book Co., 2006. R.M.Maier, I.L.Pepper and C.P.Gerba, Elsevier, Environmental Microbiology: A Laboratory Manual, 2 nd Edition, Academic Press, 2004. B.C.Bhattacharyya and R.Banerjee, Environmental Biotechnology, Oxford University Press I.S.Thakur, Environmental Biotechnology: Basic Concepts and Applications, I.K.International.
<u>Learning Outcomes</u>	On completion of this course, students should be able to Identify interaction between living organisms and environment and employ environmental pollution management technologies to come up with solutions against growing industrial pollution.

Programme: M. Sc. Biotechnology

Course Code: GBO-281 Title of the Course: Advances in Plant and

Animal Biotechnology

Number of Credits:3

Effective from AY: 2019-2020

Prerequisites for the course:	No prerequisites required.	
Objective:	The course is designed to provide a comprehensive exposure to advances in animal and plant biotechnology. Student is expected to have a clear understanding of basic biotechnology techniques to learn recent advances in the	

48