Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-504

Title of the Course: BIOPHYSICAL PRINCIPLES & ANALYTICAL TECHNIQUES

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	No prerequisite is required.	
for the Course:		
Course	The course is designed to provide a	
Objectives:	1)broad exposure to basic techniques used in Modern Biology research.	
	2) to impart a basic conceptual understanding of the princip	oles of these
	techniques and emphasize the biochemical utility of the same.	
	3) clear understanding of all analytical techniques such that the	ne barrier to
	implementing the same is abated.	
Content:		No. of hours
	MODULE I	
	Description of Macromolecular Structure, Intermolecular	
	and Intramolecular forces in protein, DNA and other	
	biomolecules.	
	 Diffusion, Brownian motion and sedimentation, 	15
	determination of molecular weight from sedimentation	15
	and diffusion.	
	 Concept and application of Chemical and Physical 	
	equilibria in biological system	
	 Nature and Role of Ionic, Covalent and Noncovalent 	
	Interaction in molecular confirmation, scaffolding and	
	packaging of protein and DNA	
	Thermodynamics of protein folding: Protein folding	
	kinetics, Misfolding and aggregation.	
	Physical biochemistry of cell: Chemical forces translation	
	and rotation, diffusion, directed movements,	
	biomolecules as machines, work, power and energy,	
	thermal, chemical and mechanical switching of	
	biomolecules,	
	Biochemical and biophysical characterizations of	
	biomolecules: Fluorescence from GFP), UV-VIS absorption	
	and emission spectra resulting from intrinsic Tryptophan and GFP chromophores, Fluorescence quenching and	
	and GFP chromophores, Fluorescence quenching and	

	polarization studies, Unfolding and refolding studies using CD. protein 15 hours 11 diffusion, dynamics by	
	fluorescence correlation spectroscopy.	
	MODULE II	
	 Spectroscopy: Electromagnetic radiations in spectroscopic techniques. Beer-Lambert law, UV/Visible spectroscopy, Fluorescence spectroscopy, Emission, excitation, Quenching, Quantum Yield. Nuclear magnetic resonance Spectroscopy. Electron spin resonance spectroscopy. Centrifuge: Basic concepts of centrifugation. Calculation of g value from RPM. Types of rotors used, Differential centrifugation, Density gradient centrifugation. Rate-zonal centrifugation, Isopycnic centrifugation. Microscopy: Abbey's law, Resolution, Magnification, Phase-contrast microscopy, Confocal microscopy, High resolution microscopy, Nanoscopy: Atomic force Microscopy, Scanning tunneling Microscopy and Cryo-electron microscopy X-ray 	
	diffraction.	
Pedagogy:	Lectures/ tutorials/assignments.	
References/	1. C.R. Cantor and P.R. Schimmel, Biophysical Chemistry, 2nd Edn., 1982.	
Readings:	 M.A. Subramaniam, Biophysics: Principle & techniques. MJP Publishers, 2021. K. Salman, and Z. Diaz, Principal and Techniques of Bioinstrumentation. Intelliz Publisher, 2016. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies. Academic Press., 2006. I. Tinoco, K. Sauer, J. Wang, and J. Puglisi, Physical Chemistry: Principles and Applications in the Biological Sciences. Prentice Hall, Inc. 2013 P. Atkins, Physical Chemistry for the Life Sciences (2nd Revised Edition), 2015. A. Cooper, Biophysical Chemistry. Royal Society of Chemistry, 2011. K. E. Van-Holde, C. Johnson, Principles of Physical Biochemistry, 3rd Edn. Prentice Hall, 2010. 	
Course	1. Students will learn to combine previously acquired knowledge of physics	
Outcomes:	and chemistry to understand the biochemical processes in the cell.2. This course will offer them a broad idea of instruments/techniques used in biological science laboratories.	

3.	Students will achieve knowledge that will be helpful to use and handle
	research lab instruments.
4.	After completion of this course students will have a clear idea of the
	industrial applications of bioinstrumentation that will be advantageous
	for their job /research prospects in Industries and academics.