Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-508

Title of the Course: GENETICS AND MOLECULAR BIOLOGY

Number of Credits: 3

Effective from AY: 2022-23

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	The aim of this course is to	
Objectives:	1) obtain and understand the fundamental knowledge of n	nolecular and
	cellular processes such as RNA transcription, protein syr	nthesis,
	mutation, epigenetic modification and gene regulation.	
	2) Understand the organization of the genome and gene tr	ansfers in
	prokaryotes	
Content:		No of
	MODULE I	hours
	 Mendelian Genetics and Population genetics 	
	 Structure of DNA - A,B, Z and triplex DNA; 	
	Organization of bacterial genome and eukaryotic	15
	chromosomes Heterochromatin and Euchromatin	
	• DNA melting and buoyant density; Tm; DNA	
	reassociation kinetics (Cot curve analysis) Repetitive and	
	unique sequences; Satellite DNA; DNase I hypersensitive	
	regions; DNA methylation & epigenetic effects.	
	• Structure and function of prokaryotic and eukaryotic	
	mRNA, tRNA (including initiator tRNA), rRNA and	
	ribosomes. Processing of eukaryotic hnRNA: 5'-Cap	
	formation; 3'-end processing of RNAs and	
	polyadenylation; loop model of translation; Splicing of	
	mRNA.	
	Gene transfer in bacteria-Conjugation, transformation	
	and transduction.	
	 DNA mutation and repair, Transposons 	
	MODULE II	
	Prokaryotic and eukaryotic transcription -RNA	15

	polymerase/s and sigma factors,	
	 Transcription unit, Prokaryotic and eukaryotic promoters, Promoter recognition, Initiation, Elongation and Termination (intrinsic, Rho and Mfd dependent) 	
	 Gene regulation: Repressors, activators, positive and negative regulation, Constitutive and Inducible, small molecule regulators, operon concept: <i>lac, trp</i>operons, attenuation, anti-termination, stringent control, translational control. Eukaryotic transcription - RNA polymerase I, II and III mediated, General eukaryotic transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); assembly of pre-initiation complex for nuclear enzymes, interaction of transcription factors with the basal transcription machinery and with other regulatory proteins, mediator, TAFs. ; Silencers, insulators, enhancers, mechanism of silencing and activation. 	
	MODULE III	
	 Translation in prokaryotes and eukaryotes, Regulatory RNA and RNA interference mechanisms, miRNA, non-coding RNA; Families of DNA binding transcription factors: Helix-turnhelix, helix-loop-helix, homeodomain; 2C 2H zinc finger, multi cysteine zinc finger, basic DNA binding domains (leucine zipper, helix-loop-helix), nuclear receptors. Interaction of regulatory transcription factors with DNA: properties and mechanism of activation and repression including Ligand-mediated transcription regulation by nuclear receptors. DNA replication. DNA recombination. 	15
Pedagogy:	Lectures/tutorials/assignments	
References/ Readings:	 D. P. Clark, N. J. Pazdernik and M. R. McGehee, Molecular Biology (3rd) Elsevier Inc, 2019. W. Klug, M. Cummings and C. Spencer, Concepts of Genetics (12ed), Pearson publishers, 2019. 	
	 E. S. Goldstein , T. Stephen, J. Kilpatrick and J. Krebs, Lew XII, Bartlett Publishers, 2017. 	/in's genes

	4. H. F. Lodish, A. Berk, C. Kaiser, M. Krieger and A. Bretscher, Molecular	
	Cell Biology (8 ed) Freeman MacMillan publisher, 2016.	
	5. P. J. Russell, iGenetics: A Molecular Approach, Pearson publisher,	
	2016.	
	6. G. Karp, J. Iwasa and W. Marshall, Karp's Cell and Molecular Biology:	
	Concepts and Experiments, (8 ed) Wiley Publisher, 2016.	
	7. M. Strickberger, Genetics, (3 ed) by Pearson publishers, 2015.	
	8. M. J. Simmons and P. Snustad, Principles of Genetics (7 ed), Wiley	
	Student Edition, 2015.	
	9. J. D. Watson, T A Baker, S P Bell, A Gann, M Levine and R Losick,	
	Molecular Biology of the Gene, Cold Spring Harbor Laboratory Press,	
	New York, 2014.	
	10. R. F. Weaver, Molecular Biology (5th ed) McGraw Hill Higher	
	Education publisher, 2012.	
Course	1. The students should be able to explain and summarize the scientific	
Outcomes:	principles of the molecular biology of DNA, RNA and understand the	
	role played in the overall functioning of the cell.	
	2. Will be able to understand the various molecular mechanisms of	
	gene regulation.	
	3. Will appreciate the role of noncoding RNA in regulation and their	
	application in molecular biology	
	4. Understand the importance of repeat sequences and DNA repair	
	systems	