Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-521

Title of the Course: CONCEPTS IN BIOCHEMISTRY

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	No prerequisite is required.	
for the		
Course:		
Course	The primary objective of this course is to	
Objectives:	1)build upon the knowledge of basic biochemical princip	les with an
	emphasis on different metabolic pathways and their integrati	on.
	2)understand the structure-function relationships of biomole	cules.
Content:		No. of
	MODULE I	hours
	Biochemistry: the molecular logic of life.	
	 Amino acids, proteins, nucleic acids, carbohydrates, and lipids. 	15
	 Vitamins and hormones. 	
	 Forces that stabilize biomolecules: electrostatic and 	
	Vander Waal's interaction, hydrogen bonding.	
	Interactions with solvents, Hydrophobic effect.	
	Basic Thermodynamics: Laws of thermodynamics.	
	Concepts of ΔG , ΔH , and ΔS .	
	Chemical kinetics: Concepts of Order and	
	molecularity of a chemical reaction. Derivation of	
	first and second-order rate equation, measurement	
	of rate constants. Concept of activation energy.Enzymology: Introduction and classification of	
	enzymes. Types of enzymatic reaction mechanisms,	
	Enzyme kinetics, enzyme inhibition, Regulatory	
	enzymes. Isozymes, Zymogen and Ribozyme.	
	Examples of enzymatic reactions.	

	<u>MODULE II</u>	
	 Basic concepts and design of metabolism - glycolysis, gluconeogenesis Pyruvate oxidation, Citric acid cycle Oxidative phosphorylation; the importance of electron transfer in oxidative phosphorylation; F₁-F₀ ATP Synthase; shuttles across mitochondria; regulation of oxidative phosphorylation, inhibitors of electron transport chain. Glyoxylate cycle The pentose phosphate pathway Fatty acid synthesis, β-oxidation; biosynthesis of membrane lipids and sterols with specific emphasis on cholesterol metabolism and the mevalonate pathway Amino acid metabolism; nucleotide metabolism Photosynthesis and photorespiration 	15
Pedagogy:	Lectures, tutorials, assignments.	
References/ Readings:	 E. E. Abali, S. D. Cline, D. S. Franklin, S. M. Viselli, I Illustrated Reviews: Biochemistry Wolters Kluwer publish R. L. Miesfeld, M. M. McEvoy, Biochemistry. W publisher, 2020. R.K. Murray, et al. Harper's Illustrated Biochemistry Mc publisher, 2022. D.L. Nelson, Lehninger Principles of Biochemistry. W.H. & Co., 2017. D. Papachristodoulou, A. Snape, W. H. Elliott, and D. O Biochemistry and Molecular Biology. Oxford University p 2018. L. Stryer, J. Berg, J. Tymoczko, G.Gatto. Biochemistry N Freeman publisher.,2019. D. Voet, J.G. Voet, W.P.Charlotte, Principles of Bioc Wiley publisher, 2012. D. Voet, J.G. Voet, W.P.Charlotte, Fundamentals of Bioc Life at the molecular level. Wiley publisher, 2018. The students will be able to: 	her, 2021. Vorldwide CGraw Hill Freeman C. Elliott, publisher, New York, chemistry.

Course	1. gain fundamental knowledge in biochemistry
Outcomes:	2. draw molecules and reaction mechanisms perfectly.
	3. acquire knowledge of biomolecules and their significance
	4. understand the role of enzymes in the regulation of metabolic
	pathways.