Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-524

Title of the Course: BIOLOGY OF THE EXTREMOPHILIC ORGANISMS

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	No prerequisites required	
for the		
Course:		
Course	1) To obtain knowledge regarding the existence of extreme habitats.	
Objectives:	2) To understand how the strategies are adopted to overcome	
	extreme conditions.	
Content:		No of
	MODULE I	hours
	Thermophiles: Tree of life	
	 Types of Extreme habitats based on environmental 	15
	variables/sources:	
	 Low Temperatures: Polar regions (Antarctica and 	
	Arctic).	
	High temperatures: Deserts, Hot springs, hydrothermal	
	vents, Deserts.	
	 Pressure: Deep-sea environments, Subsurface rocks, Mariana Trench. 	
	 Vacuum: Space station, space habitation. 	
	• Desiccation: extreme hypersaline environments,	
	deserts.	
	 Hypersaline: coastal lagoons, salt and soda lakes, 	
	salterns, deep-sea brine pools, brine channels in sea	
	ice, and fermented foods and pickling brines.	
	• pH: Acidic [Solfataric fields (sulfuric volcanic fields),	
	geysers, sulfuric acid pools, acid minedrainages from	
	coal and metal mining waste] or Alkaline (Soda lakes	
	and soda deserts).	
	 Low oxygen: Low or depleted oxygen level in water 	
	bodies (anthropogenic activities, pollution,	
	eutrophication, algal growth)	
	Methane: Natural wetlands, freshwater lakes, streams,	
	rivers, estuarine and coastal areas, termite, and wild	

	geothermal vents, gas hydrates, and methane produced from biomass combustion (i.e., wildfires).	
	Anthropogenic sources agriculture, with cattle and rice cultivation as the largest contributors, fossil fuels, waste (ex. landfills, sewage), and biomass/biofuel burning.	
	 Categories of extremophiles: Thermophile, Halophile, Psychrophile, Alkaliphile, Acidophile, Piezophile or barophile, Xerophiles, Anaerobic, methanogenic, metal resistant, radiation resistant, endoliths. 	
	MODULE II	
	 Homeostasis, enantiosis (physiological/biochemical) Thermogenesis, exothermic, endothermy molecular mechanisms (stability of proteins, catalytic rates) Stress proteins: heat shock, chaperonins, SAPKs Freeze avoidance/tolerance: antifreeze proteins, ice nucleation, frost (cold) hardiness, Membrane 	15
	 structures, and temperature. Life under pressure: barophilic bacteria, metazoan, Deep diving penguins, mammals 	
	 Energy metabolism – the role of oxygen (normoxia, hypoxia, anoxia) physiological adaptations (hibernation, torpor, estivation) Photosynthesis - physiological and biochemical 	
	 adaptations to extreme light and temperature Ionizing radiation - mechanism of radiation resistance Life with limited water - arthropods, reptiles 	
	 Hot, dry environments - mammalian physiological adaptations 	
	 Mechanisms to avoid osmotic stress acid and alkaline environments Overcoming heavy metal and toxin tolerances, 	
	Biotechnological application of extremophiles	
Pedagogy:	Lectures, tutorials, assignments	

References/	1. R.P. Anitori, Extremophiles: Microbiology and Biotechnology. Caister
Readings:	Academic Press, 2012.
	2. R.V. Durvasula, and D.V. Subba Rao, Extremophiles: From Biology to
	Biotechnology. CRC Press, 2018.
	3. J. Elster, G. Prisco, A.H.L Huiskes, H.G.M. Edwards, Life in Extreme
	Environments., Insights in Biological Capability. Cambridge University
	Press, 2020.
	4. N. Gunde-Cimerman, A. Oren, A. Plemenitaš (Ed) Adaptation to Life at
	High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer
	Publisher, 2005.
	5. S. Richa and S. Vivek, Physiological and Biotechnological Aspects of
	Extremophiles. Academic Press, 2020.
	6. V. Singh Om, Extremophiles: Sustainable Blackwell, 2012.
	7. D.A. Wharton. Life at the Limits: Organisms in Extreme Environments
	Cambridge Press, 2002.
Course	1. Students will be able to understand and distinguish between various
Outcomes:	types of extreme environments.
	2. Students shall gain knowledge about specialised features exhibited
	by extremophilic organisms.
	3. Students shall be able to understand the mechanisms of adaptation
	adopted by different organisms in extreme habitats.
	4. Students shall be able to understand the bioprospecting of the
	extremophiles for biotechnological applications.