Name of the Programme: M.Sc. Biotechnology

Course Code: GBT–526

Title of the Course: LAB VI: LAB IN BIOINFORMATICS

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	NIL	
for the		
Course:		
Course	The aim is	
Objectives:	1) to provide practical training in bioinformatics and statis	tical methods
	2) learn to access and search the major public databases for	or data
	retrieval.	
Content:		No. of hours
	1. Using NCBI and Uniprot web resources.	
	2. Introduction and use of various genome databases.	30
	3. Sequence information resource: Using NCBI, EMBL,	
	Genbank, Entrez, Swissprot/TrEMBL, UniProt.	
	4. Similarity searches using tools like BLAST and	
	interpretation of results.	
	5. Multiple sequence alignment using ClustalW.	
	6. Phylogenetic analysis of protein and nucleotide	
	sequences.	
	7. Use of gene prediction methods	
	(GRAIL/Genscan,/Glimmer).	
	8. Use of various primer designing and restriction site	
	prediction tools.	
	9. Use of different protein structure prediction databases	20
	(PDB, SCOP, CATH).	30
	10. Construction and study of protein structures using	
	RASMOL/Deepview/PyMol. 11. Homology modelling of proteins.	
	12. Whole-genome assembly from NGS raw data sequence	
	13. 16S rRNA sequence analysis and use of Bioedit	
	14. Molecular docking	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	1. A.D. Baxevanis, G.D. Bader, D.S. Wishart, Bioinformatics	: A Practical
Readings:	Guide to the Analysis of Genes and Proteins Wiley Publisher, 2020.	
	2. S. Shui Qing, Bioinformatics: A Practical Approach	
L		

	Hall/CRC Mathematical and Computational Biology), 2007.		
	3. W. Even, and G. Grant, Statistical methods in Bioinformatics: An		
	introduction, 2005.		
	4. N.C. Jones, and P.A. Pevzner; Introduction to Bioinformatics		
	Algorithms; Ane Books, India, 2004.		
	5. D.W. Mount, Bioinformatics: Sequence and Genome Analysis, Cold		
	Spring Harbor Laboratory Press, 2001.		
Course	On completion of this course, students should be able to:		
Outcomes:	1. describe contents and properties of important bioinformatics		
	databases, perform text- and sequence-based searches, analyse		
	and discuss results in the light of molecular biology knowledge;		
	2. explain major steps in pairwise and multiple sequence alignment,		
	explain its principles and execute pairwise sequence alignment by		
	dynamic programming;		
	 predict secondary and tertiary structures of protein sequences; 		
	4. perform various statistical tools available to analyse the data.		