SEMESTER III

Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-600

Title of the Course: RECOMBINANT DNA TECHNOLOGY

Number of Credits: 3

Effective from AY: 2022-23

Pre-requisites	General concepts in genetics and molecular biolog	V
for the		7
Course:		
Course	The students will understand the use of	
Objectives:	1) various enzymes and techniques for manipulating DNA.	
	2) various DNA vectors and their use in creating recom	binant DNA
	molecules	
	3) recombinant DNA modification techniques and heterol	ogous gene
	expression used for creating applications for biologic	al research
	and biotechnology industries.	
Content:		No. of
	MODULE I	hours
	 Enzymes used in Molecular biology: restriction 	
	endonucleases and methylases; DNA ligase, Klenow	
	enzyme, T4 DNA polymerase, polynucleotide kinase,	15
	alkaline phosphatase; nucleases, Topoisomerase,	
	thermostable polymerase, Terminal deoxynucleotide	
	polymerase and others.	
	 Cohesive and blunt end ligation; linkers; adaptors; 	
	 Homopolymer tailing; labelling of DNA: nick translation, 	
	 Random priming, radioactive and non-radioactive 	
	probes,	
	• Hybridization techniques: northern, southern, south-	
	western and far-western and colony hybridization,	
	fluorescence in situ hybridization. Plasmids;	
	Bacteriophages; M13mp vectors; pUC19 and	
	pBluescript vectors, phagemids; Lambda vectors;	
	Insertion and Replacement vectors; Cosmids;	
	Artificial chromosome vectors (YACs; BACs);	
	Principles for maximizing gene expression vectors;	
	pMal; GST; pET-based vectors; Protein purification;	
	His-tag; GST-tag; MBP-tag etc.; Intein-based vectors;	

 Inclusion bodies; methodologies to reduce formation of inclusion bodies; mammalian expression and replicating vectors; Baculovirus and Pichia vectors system, Plant based vectors, Ti and Ri as vectors, yeast vectors, shuttle vectors. 	
<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>	15
 MODULE III Gene silencing techniques; introduction to siRNA; siRNA technology; Micro RNA; construction of siRNA vectors; principle and application of gene silencing; gene knockouts and gene therapy; Development of transgenic plants; debate over GM crops; introduction to methods of genetic 	15

	 manipulation in different model systems e.g. fruit flies (Drosophila), worms (C. elegans), Frog (Xenopus sp), fish (zebra fish) and chick. Transgenics - gene replacement; gene targeting; creation of transgenic and knock-out mice; disease model; introduction to genome editing by CRISPR- CAS with specific emphasis on Chinese and American clinical trials; Cloning genomic targets into CRISPR/Cas9 plasmids; electroporation of Cas9 plasmids into cells; purification of DNA from Cas9 treated cells and evaluation of Cas9 gene editing; in vitro synthesis of single guide RNA (sgRNA); using Cas9/sgRNA complexes to test for activity on DNA substrates; evaluate Cas9 activity by T7E1 assays and DNA sequence analysis; Applications of CRISPR/Cas9 technology 	
Pedagogy:	Lectures, tutorials, assignments	
References/ Readings:	 Lectures, tutorials, assignments T. A. Brown, Gene Cloning and DNA Analysis: An Introduction, Wiley-Blackwell Publishers, 2016. T. A Brown, Genomes, New York: Garland Science Publisher, 2017. J. W. Dale, M. von Schantz and N. Plant, From Genes to Genomes: Concepts and Applications of DNA Technology, Wiley- Blackwell publisher, 2011. H. K. Das, Textbook of Biotechnology, Wiley Publisher, 2017. M. R. Green and J. Sambrook, Molecular Cloning: A Laboratory Manual.CSH Press, 2012. V. Hunter and F. Strickland, Applications of Recombinant DNA Technology. ED-TECH Press, 2018. A. J. Nair, Introduction to Biotechnology and Genetic Engineering. Laxmi Publications Pvt. Ltd, 2008. S. Primrose and R. B. Twyman, Principles of Gene Manipulation and Genomics, Blackwell Publishing Limited, 2006. M. K. Sarwar, I. A. Khan and D. Barp, Applied Molecular Biotechnology: The Next Generation of Genetic Engineering CRC Press, 2016. V. Singh and P Dhar, Genome Engineering via CRISPR-Cas9 System, Elsevier Publisher, 2020. 	
Course	The students will be able to	

Outcomes:	1. create recombinant DNA molecules and evaluate their
	expression.
	2. Exploit relevant tool/techniques as well as vector and host for
	cloning and expression.
	3. Design experiments for generating applications for use in medical
	animal and plant biotechnology.
	4. Devise strategies for creating transgenic and understand CRISPER
	technology