Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-601

Title of the Course: LAB VII: RECOMBINANT DNA TECHNOLOGY

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	A theory course in Recombinant DNA technology	
for the		
Course:		
Course	The students will learn	
Objectives:	1) Understand cloning strategies and expression of foreign	genes
	2) setting up reactions for DNA manipulation.	
	3) to interpret the results of DNA manipulation studies and	use
	4) appropriate tools for the validation of recombinant DNA	
Content:		No. of
	MODULE I	hours
	• Plasmid DNA isolation (Alkaline lysis, Boiling method ,	
	column based method)	30
	 Plasmid DNA quantification. 	
	 Restriction Enzyme digestion of plasmid DNA. 	
	 Polymerase Chain reaction (RAPD/RFLP). 	
	• Real Time PCR.	
	Reverse transcriptase PCR	
	MODULE II	
		30
	 Cloning of insert into a plasmid vector 	
	• Transformation of <i>E.coli</i> with standard plasmids,	
	Calculation of transformation efficiency.	
	 Confirmation of the insert by Colony PCR and 	
	Restriction mapping	
	• Expression of recombinant protein, the concept of	
	soluble proteins and inclusion body formation in	
	E.coli, SDS-PAGE analysis	
	 Purification of His-Tagged protein on Ni-NTA columns 	
	 Southern blotting hybridization. 	
Pedagogy:	Hands-on experiments in the laboratory, online vide	os.

References/	1. S. Carson, Manipulation and expression of recombinant, DNA a	
Readings:	laboratory manual Elsevier Academic Press, 2006.	
	2. M.R Green and J. Sambrook, Molecular Cloning: A Laboratory Manual	
	Three-volume CSH Press, 2012.	
	3. J.S. Vennison, Laboratory Manual for GENETIC ENGINEERING, PHI	
	Learning, 2009.	
Course	The student will be able to	
Outcomes:	1. Create recombinant DNA molecules.	
	2. Conceptualize the various steps in cloning DNA in an appropriate	
	vector and evaluate gene expression.	
	3. Apply and use the knowledge to create tools in diagnostics, medical	
	and forensic science.	
	4. Apply and use PCR for diagnostic applications	