Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-603

Title of the Course: LAB VIII: BIOPROCESS TECHNOLOGY

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites for the Course:	None	
Course Objectives:	 The objectives of this laboratory course is/are: 1) To educate students about fundamental concepts of Bio technology 	process
	2) To provide hands-on training to students in upstream ar downstream unit operations.	nd
Content:	MODULE I	No. of hours
	 Microbial production of ethanol using yeast sp. Estimating ethanol concentration by Cerric Ammonium nitrate method. Microbial production and estimation of organic acids: Citric acid using Aspergillus sp. Microbial production of antibiotics. Immobilization of microbial cells: use of alginate. Fermentation: Batch, Fed-Batch and Continuous. 	30
	 MODULE II Use of fermentor with special reference to scale-up operations. Microfiltrations: separation of cells from broth Bioseperations: Chromatography and extractions (organic acid & antibiotics) Manufacture of ginger ale and estimating the alcohol content. Solid State Fermentation: Mushroom cultivation. Food Microbiology: Preparation of an edible 	30
Pedagogy:	fermented product. Hands-on experiments in the laboratory, online vide	os.

References/	1. A. Moser. Bioprocess technology: kinetics and reactors. Springer
Readings:	Science & Business, 2012.
neuungo	2. A. Wiseman (Ed). Topics in enzyme & Fermentation technology.
	British Polymer Journal, Wiley Blackwell, 1984.
	3. B. Ray, & A. Bhunia, Fundamental food microbiology. CRC press,
	2013.
	4. D. Behrens & P. Kramer (Ed), Bioprocess engineering:
	Downstream processing & recovery of bioproducts, safety in
	Biotechnology and regulations, 1990.
	5. F. Stanbury & A. Whitaker, Principles of fermentation technology.
	Elsevier, 2016.
	6. J.M. Coulson & J.F. Richardso. Chemical engineering. Elsevier,
	2017.
	7. J. P. Tamang (Ed.). Health benefits of fermented foods and
	beverages. CRC Press, 2015.
	8. Khramtsov, N., McDade, L., Amerik, A., Yu, E., Divatia, K.,
	Tikhonov,A., & Henck, S. Industrial yeast strain engineered to
	ferment ethanol from lignocellulosic biomass. Bioresource
	Technology, 102(17), 8310-8313, 2011.
	9. L.E. Cassida, Industrial microbiology. New Age International Pvt
	Ltd Publishers, 1994.
	10. M.C. Flickinger & S.W. Drew (Ed). Encyclopedia of bioprocess
	technology. Vol 1-5. Wiley Blackwell, 1999.
	11. M.D. Trevan, Immobilized enzymes: An introduction & application
	in Biotechnology. Wiley Blackwell, 1980.
	12. M. Young (Ed) Comprehensive Biotechnology. Vol 2- 4. Elsevier,
	1985.
	13. P. Prave, V. Fanst, W. Sitting, D.A. Sukatesh (Ed.) Fundamentals
	of Biotechnology. Saras Publications, 1987.
	14. T. Korzybski, Z. Kowszyk-Gindifer, & W Kurylowicz. Antibiotics:
	origin, nature and properties. Elsevier, 2013.
	15. T. T. Ngo (Ed.). Molecular interactions in bioseparations. Springer
	Science & Business, 2013.

Course	On completing the course, students should be able to:		
Outcomes:	1. appreciate relevance of microorganisms from industrial context;		
	 carry out stoichiometric calculations and specify models of growth; 		
	3. give an account of design and operations of various fermenters;		
	 present unit operations together with fundamental principles for basic methods in production techniques for bio-based products; 		
	 calculate yield and production rates in biological production process, and also interpret data; 		
	give an account of important microbial/enzymatic industrial processes in the industry.		