Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-607

Title of the Course: PLANT AND ANIMAL BIOTECHNOLOGY

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites		
for the	Basic knowledge of molecular biology and recombinant DNA	Technology
Course:	busic knowledge of molecular biology and recombinant bior	reennoiogy
Course	1) The provide a comprehensive exposure to advances	in animal
Objectives:	and plant Biotechnology.	
	2) Student is expected to have a clear understanding	g of basic
	Biotechnology techniques to learn recent advances in t	
Content:		No. of
		hours
	MODULE I	
	General features of eukaryotic expression and vector	15
	systems. Gene transfer to animal cells. Transgenic mice	
	methodologies, Transgenic poultry, Transgenic Fish,	
	Embryo transfer technology, Gene targeting, Cloning live	
	stock by nuclear transfer, Transgenic livestock, Ethics of	
	cloning Disease resistant transgenics, animal models for	
	disease study, Pharming, improving milk quality,	
	improving traits, Xenografts, Toxological applications,	
	knock outs.	
		-
	MODULE II	15
	Strategies for Introducing Biotic and Abiotic Stress	
	Resistance/Tolerance Bacterial resistance; Viral	
	resistance; Fungal resistance; Insects and pathogens	
	resistance; Herbicide resistance; Drought, salinity,	
	thermal stress, flooding and submergence tolerance	
	Genetic Engineering for Plant Architecture and	
	Metabolism Seed storage proteins; Protein engineering;	
	Vitamins and other value addition compounds; Source-	
	sink relationships for yield increase; Post-harvest	
	bioengineering; Plant architecture; Flowering behaviour	
	Plants as Biofactories: Concept of biofactories;	
	Fermentation and production of industrial enzymes,	
	vitamins and antibiotics and other biomolecules; Cell	
	· · · · · · · · · · · · · · · · · · ·	

	cultures for secondary metabolite production; Production of pharmaceutically important compounds; Bioenergy generation	
Pedagogy:	Lectures, tutorials, assignments	
References/	1. A. Bongso and E.H. Lee, Stem cells from bench to bed side World	
Readings:	Scientific publisher, 2004.	
	2. A. Slater, N. Scott, and Fowler, Plant Biotechnology: The genetic	
	manipulation of plants. Oxford University Press, 2003.	
	3. B. D. Singh, Plant Biotechnology. Kalyani Publisher, 2015.	
	4. B.R Jordan. The Molecular Biology and Biotechnology of	
	Flowering, CABI Publication, 2006.	
	5. M. Denis, Plant Breeding and Biotechnology: Societal Context	
	and the Future of Agriculture, Cambridge University Press, 2007.	
	6. P. K. Gupta, Plant Biotechnology. Rastogi Publication, 2015.	
	 W. Neil. Phytoremediation: Methods and Reviews, Humana Press, 2007. 	
Course	1. Students will be familiar with the principles and applications of	
Outcomes:	different techniques used in plant and animal transformation.	
	2. Students will learn to compare the pros and cons of transgenic	
	plants in the environment.	
	3. They will understand the role of rDNA technology in evolving	
	plants for resistance to pest and disease, tolerance to herbicides	
	and abiotic factors.	
	4. They will learn about the different mechanisms of disease	
	resistance, stress tolerance and products produced using genetic	
	engineering in plants and animals.	