Name of the Programme: M.Sc. Biotechnology

Course Code: GBT-625

Title of the Course: EMERGING TRENDS IN WASTEWATER TREATMENT

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	Basic knowledge in Microbiology or Environmental Science or		
for the	Environmental Technology		
Course:			
Course	The primary objectives of the course are as follows:		
Objectives:	 Reinforcing the basic tenets of microbial treat wastewaters and waterborne pathogens (source, fate a affecting their survival in the environment). Understanding the advantages and disadvantages centralized wastewater systems, decentralized systems systems and appropriate application of each of these systems address and how these technologies need to be m address site specific conditions. Gain insights into the use of biological treatment proce to recover valuable constituents or produce valuable from wastewaters. Understanding of microbial or molecular based technol to monitor for the presence, sources and types of con discharged in complex wastewater mixtures. 	between and onsite stems. treatment nodified to esses used e products ogies used	
Content:	MODULE I Global Water Crisis Overall trends and challenges in the treatment of wastewaters and provide an overview of water demands from a Global and India centric perspective. Issues and questions: • Consumption v/s supply; how does the treatment of water help to ensure a renewable and sustainable water resource • The major wastewater impacts on ecosystem integrity and human health. • Areas requiring treatment in India. • Major sector treatment issues (industrial,	No. of hours 15	

I		
	agricultural, domestic)	
	 Impact of increasing complexity in the 	
	composition of wastewater on treatment	
	strategies	
	Challenges in treatment of wastewater	
Decer	ntralized Wastewater Treatment Systems	
The m	najor drivers for decentralized systems:	
	 Economics of decentralized systems v/s 	
	centralized systems.	
	Logistical Challenges: Impacts relating to	
	urban sprawl and difficulty in connecting	
	newly developed areas to centralized	
	systems	
	 Complexity and Site Specific Treatment 	
	Needs: Flexibility of decentralized systems.	
	 Difference between decentralized and on- 	
	site systems: in terms of size and the	
	transport and treatment of wastewaters	
6 -11		
Con	ventional Biological Treatment Processes	
•	Overview of conventional biological treatment	
	processes and commonality amongst centralized	
	and decentralized systems dealing with the	
	treatment of wastewaters and solids.	
•	The efficacy and challenges associated with the	
	use of biological treatment for major classes of	
	wastewater constituents.	
•	Examination of common biological treatment	
	strategies associated with different domestic,	
	agricultural, industrial and manufacturing sector	
	needs.	
•	Treatment Platforms: Review of treatment	
	processes that are generally incorporated within a	
	technology (e.g., fixed film biological treatment	
	incorporated into a technology like a rotating	
	biological contactor)	
•	Hybrid systems and different treatment platforms	
	nested with a hybridized system in order to	
	develop a customized treatment strategy	
	designed to deal with a specific suite of	
I		

combines fixed phytoremediation to • Overview of cas hybridized decentral	ized approaches. for effective treatment of
MOD	ULE II
groups. • Bioaugmentation teo the biodegradation waters through the a - Autochthonou - Allochthonou - Gene bioaugu • Techniques for the t pollutants ranging hydrocarbons, nit	e biological performance. zed: bacteria, fungi and algal 15 chniques designed to improve of contaminated soils and actions of microorganisms: bus bioaugmentation us bioaugmentation mentation treatment of a wide range of from polycyclic aromatic rophenols, polychlorinated enols, crude oil, diesel oil,
emerging nanoparti systems range from the oxidation or s constituents that of function of downstr the incorporation of compound membrane the membrane or pathogens. • Standardized test operating procedures	nent systems integrating treatment technologies with icle applications. Integration the use of nanotechnology in sequestering of wastewater could harm or impede the ream biological treatment, to of biocide nanoparticles into nes to prevent biofouling of to inactivate waterborne protocols or standardized s of these technologies. ed in these technologies to

address site specific conditions.

- Unique opportunities existing to address difficult or unusual treatment challenges.
- Seaweeds/macroalgal wastewater treatment
- Examining factors such as the maturity and reliability of the technology and a discussion of factors such as wastewater constituents, site conditions, cost factors and time that influence the applicability and suitability of the technology.

Resource Recovery from Wastewaters

- An overview of the use of biological treatment processes used to recover valuable constituents or produce valuable products from wastewaters
- The recovery of valued nutrients such as nitrogen and phosphorus, to valued elements and metals, to the generation of energy though microbial fuel cells or the generation of biogas.
- Integration of nutrient recovery steps such as Microbial Electrochemical Cell (MEC) to recover valuable nutrients in treatment technologies
- Novel composting methods such as *terra preta* of the sludge (biomass) generated after treatment for increasing soil fertility

Environmental Monitoring

- Review and discussion of microbial and molecular based technologies.
- Types of testing.
- Application of biomarkers; advantages and limitations.

Types of biomarkers used for environmental monitoring:

- Ames Salmonella mutagenicity assay
- Microtox using bioluminescent bacteria
- Vitellogenin
- DNA adducts
- Sister chromatid exchange
- Aryl hydrocarbon ethoxylase (AHH)
- Ethoxyresorufin o deethylase (EROD) assay
- Yeast based endocrine toxicity assays (YES)

	- Other ELISA based tests	
Pedagogy:	Lectures, tutorials, assignments	
References/ Readings:	 A. K. Chaterjee, Introduction to environmental biotechnology. PHI, India, 2000. M. Colin, Marine Microbiology: Ecology and applications. Second edition. Garland science, 2012. T. Satyanarayana, B. Johri, and T. Anil, Microorganisms in Environmental Management, Springer Publishers, 2012. M. J. Kennish, Practical Handbook of Estuarine and Marine Pollution. CRC Press, Francis and Taylor, 2019. R. B. King, J. K. Sheldon, and G. M. Long, Practical Environmental Bioremediation: The Field Guide, Lewis Publishers, 1998. S.M. Meena, and M.M. Naik, Advances in Biological Science Research: a practical approach. Elsevier, 2019. M. Prabhu, Resource recovery from wastewaters for sustainable development. 2016. 	
Course Outcomes:	 At the end of this course, students will be able to understand the basic tenets of biological wastewaters treatment, the advantages and disadvantages between centralized and decentralized systems. able to gain insights into the processes to recover or produce valuable products from wastewater. able to understand emerging treatment strategies that combine both conventional biological approaches with emerging technologies in hybridized systems exposed to how biological monitoring can be integrated with water quality monitoring to enhance our understanding of how wastewaters are impacting ecosystem health. 	