Name of Programme: M. Sc. Applied Geology Course Code: GEO-623 Title of the Course: Engineering Geology No of Credits: 03 Effective from AY: 2023-24

Prerequisites	Students should have undergone M.Sc. Semester I and II.	
for the course		
<mark>Objective</mark>	To understand rock and soil mechanics. To study civil structures and their	
	implications on the environment.	
	Engineering properties of the soil, soil profile, size of the soil	15 nours
	particles. Structure: Porosity, voids ratio and degree of	
	saturation. Plasticity and Atterberg limits, clay swelling and	
	tests to determine soil properties and geological characteristics	
	of the sediment. Engineering properties of the rock: physical	
	and mechanical properties, RQD, RMR.	
	Module 2	
	Site investigations: planning and design, aerial photography,	<mark>15 hours</mark>
C	engineering geophysics, borehole logging and in situ tests.	
Content	Mass movement with emphasis on landslide, causes of nill	
	coastal hazards and engineering structures.	
	Module 3	
	Dams and reservoirs: Types of dams, spillways, forces acting,	15 hours
	criteria for site selection, causes of failure, reservoir siltation,	
	Bridges: Design and construction identifying and managing	
	geologic hazards - groundwater, problematic ground	
	conditions, impacts to existing utilities and adjacent structures.	
	Nuclear plants: Construction, nuclear reactor accidents and	
	<mark>safety. Case studies.</mark>	
Pedagogy	Lectures, Case studies, Discussions and Assignments.	
	1. De Vallejo, L. G., & Ferrer, M. (2011). Geological engine	<mark>ering. CRC</mark>
	press.	
	2. Bodansky, D. (2007). Nuclear energy: principles, pract	tices, and
References/	3 Kryping D P Judd W R & Kryping D P (1957) Pr	incinles of
Readings	engineering geology and geotechnics. New York: McGraw-Hil	l.
U	4. Meiswinkel, R., Meyer, J., & Schnell, J. (2013). Design and co	onstruction
	of nuclear power plants. John Wiley & Sons.	
	5. Bromhead, E. N. (1992). <i>The stability of slopes</i> . CRC Press.	
	6. Chandler, R. J. (Ed.). (1991). Slope stability engineering: dev	elopments
	and applications: proceedings of the International Conference	e on Slope

	<mark>Stability. Thomas Telford.</mark>		
	1. Students will be able to understand engineering properties of rocl		
	and soils.		
	2. Students will learn engineering tests performed for rock and soil		
<mark>Course</mark>	analysis.		
<mark>outcomes</mark>	3. They will be able to undertake site investigations and prepare		
	technical reports as well as identify and manage geological hazards.		
	4. Learn about various engineering megastructures and their site		
	selections.		