Name of the Programme: MSc Integrated

Course Code: IMC - 601

Title of the Course: Introduction to Data Science

Number of Credits: 6(4L-0T-2P) Effective from AY: 2022-23

Prerequisites for the course	Statistics and Probability theory and Python Programming
Objectives	To get started with basics of Data Science and learn all aspects of Data Science in its entirety

Content	Unit-1: Basics of Data Science:	6 hours
Theory:	Introduction; Typology of problems-Data science in a big data	0 Hours
	world: Benefits and uses of data science and big data-Facets of	
	data-The data science process-The big data ecosystem and data	
	science-The data science process: Overview of the data science	
	process- Defining research goals and creating a project charter-	
	Retrieving data-Cleansing, integrating, and transforming data-	
	Exploratory data analysis-Build the models- Presenting findings and	
	building applications on top of them.	
	Unit -2: Mathematics for Data science (Revision):	
	• Importance of linear algebra, statistics and optimization from a	7 hours
	data science perspective; Structured thinking for solving data	
	science problems.	
	 Linear Algebra: Matrices and their properties (determinants, 	
	traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix	
	factorizations; Inner products; Distance measures; Projections;	
	Notion of hyperplanes; half-planes.	
	 Probability, Statistics and Random Processes: Probability theory 	
	and axioms; Random variables; Probability distributions and	
	density functions (univariate and multivariate); Expectations and	
	moments; Covariance and correlation; Statistics and sampling	
	distributions; Hypothesis testing of means, proportions,	
	variances and correlations; Confidence (statistical) intervals;	
	Correlation functions; White-noise process.	
	Unit -3: Introduction to Data Science Methods:	_
	Linear regression as an exemplar function approximation problem;	7 hours
	Linear classification problems.	
	Unit -4: Handling large data on a single computer:	
	The problems you face when handling large data-General	7 hours
	techniques for handling large volumes of data-General	
	programming tips for dealing with large data sets-Case study 1:	
	Predicting malicious URLs-First steps in big data-Distributing	
	data storage and processing with frameworks	
	Unit 5: Join the NoSQL movement-Introduction to NoSQL	

7 hours

7 hours

7 hours

Unit 6: The rise of graph databases:

Data visualization options

Dashboard development tools

Introducing Neo4j: a graph database
 Unit 7: Data visualization to the end user:

Introducing connected data and graph databases

Crossfilter, the JavaScript MapReduce library Creating an interactive dashboard with dc.js

Content	Suggested Lab Assignment:	15 hours
Practical:	Program to understand these concepts: Numpy Arrays objects,	
	Creating Arrays, basic operations, Indexing, Slicing and iterating,	
	copying arrays, shape manipulation, Identity array, eye function,	
	Universal function	5 hours
	Program to understand these concepts: Linear algebra with	
	Numpy, eigen values and eigen vectors with Numpy	5 hours
	Program to understand these concepts: Aggregation and Joining,	
	Pandas Object: Concatenating and appending data frames, index	
	objectsHandling Time series data using pandas	5 hours
	Program to understand these concepts: Handling missing values	
	using pandas	5 hours
	Program to understand these concepts: Reading and writing the	
	data including JSON data	5 hours
	Program to understand these concepts: Web scraping using	
	python, Combining and merging	4 hours
	Program to understand these concepts: Data transformations	
	Basic matplotlib plots, common plots used in statistical analysis in	
	python	4 hours
	Program to understand these concepts: Common plots used in	T HOUIS
	statistical analysis in python Data Types	
	Program to understand these concepts: Sequence generation,	
	Vector and subscript, Random number generation	
	Data frames and functions-Data manipulation and Data Reshaping	
	using plyr, dplyr, reshape	
	Program to understand these concepts: Parametric statistics and	
	Non-parametric statistics- Continuous and Discrete Probability	
	distribution using python	
	Correlation and covariance, contingency tables- Overview of	
	Sampling, different sampling techniques- and database	
	connectivity2.	
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study	

References/	1. Practical Statistics for Data Science by Peter Bruce, Andrew Bruce, Peter Gedeck,
Readings	May 2017
	2. Naked Statistics by Charles Wheelon, 2012
	3. Business Data Science by Matt Taddy, McGraw Hill, 2019
	4. Elements of statistical learning by Jerome H. Friedman, Robert Tibshirani, and
	Trevor Hastie,2001
	5. Python for Data Analysis by Wes McKinney, 2nd edition, 2017
	6. Data Science and Big Data Analytics -EMC2
	7. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist
	Edition, 2010.
	8. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures
	and Algorithms in Python", John Wiley & sons, 2013.
	9. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.
	10. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy,
	and IPython", O'Reilly Media, Ist Edition, 2012.
	11. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made
	Easy", Packt Publishing Limited, 2015.
	12. Jacqueline Kazil, Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to
	MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.

	13. https://docs.scipy.org/doc/numpy-dev/reference/index.html#reference 14. http://www.python-course.eu/numpy.php
Course	1. Understand key data science concepts.
Outcomes	2. Learn programming skills for data manipulation and analysis.
	3. Apply data analysis techniques, including preprocessing and basic modeling.
	4. Communicate data insights effectively through visualizations and presentations