Name of the Programme: M.Sc. Marine Biotechnology

Course Code: MBT-622

Title of the Course: POTENTIALS OF MARINE BIOTECHNOLOGY

Number of Credits: 2

Effective from AY: 2022-23

Pre-requisites	Basic knowledge about Microbiology/Oceanography/Aquaculture	
for the Course:		<u> </u>
Course	1) To impart knowledge of biotechnological applicatio	ns of marine
Objectives:	organisms, important processes and	
	2) To impacts on the marine ecosystems and ways to contro	
Content:		No. of hours
	MODULE I	
	Marine viruses and Giruses	
	 Giant bacteria and their significance 	15
	 Unculturable bacteria : occurrence ,characteristics 	
	and exploitation	
	 Barophilic organisms & their applications 	
	 Seaweeds for removal of metal pollutants 	
	 GFP, RFP characteristics and their applications 	
	Green mussel adhesive protein	
	 Chitosan : products and applications 	
	Biomimetics	
	MODULE	
	MODULE II	45
	Marine pollution	15
	Biofouling and corrosion	
	Ballast water	
	Harmful algal blooms	
	 Bacterial & viral pathogens in aquaculture 	
	 Aquaculture diseases and diagnosis 	
Pedagogy:	Lectures, tutorials, assignments	
References/	1. S. Ahmed, S. Ikram, Chitosan:Derivatives, compo	osites and
Readings:	applications. Wiley, Scrivener Publishing, 2017.	
	2. Y. Bar-Cohen, Biomemetics: Biologically Inspired Techno	logies. CRC
	Press, 2006.	
	3. R. Day, M. Davidson, The Fluorescent Protein Revolution	CRC Press,
	2014.	
	4. G. Evams et al., Environmental Biotechnology. John Wi	ley & sons,

	Ltd., 2003.	
	5. Evans et al, Environmental Biotechnology, Theory and Application.	
	Wiley- Blackwell, 2000.	
	6. H.C. Flemming, P.S. Murthy, R. Venkatesan, K.E. Cooksey. Marine	
	and Industrial Biofouling. Springer, 2009.	
	7. B. Hicks (Ed.) Green Fluorescent Protein. Humana Press, 2002.	
	8. Gal Y., Ulber R., & Antranikian G. Marine Biotechnology. Springer,	
	2005.	
	9. T. Liengen, R. Basséguy, D. Féron, I.B. Beech, Understanding	
	Biocorrosion. Elsevier Ltd, 2015.	
	10. C. Munn, Marine microbiology: Ecology & applications. Garland	
	Science, 2011.	
	11. E. Nabti, Biotechnological Applications of Seaweeds. Springer, 2017.	
	12. M. Naik, M. Dubey 2017). Marine pollution and microbial	
	bioremediation. Springer.	
	13. T. Okaichi, Red Tides. Terra Scientific Publishing company, Tokyo	
	and Kluwer Academic Publishers, Boston, 2003.	
	14. Osborn M. and Smith C., Molecular microbial ecology. Taylor &	
	Francis, 2005	
	15. T. V. R. Pillay, Aquaculture: Principles and Practices. Blackwell Pub.,	
	Oxford, UK, 2001.	
	16. Rainey F., Oren A. Extremophile Microorganisms and the Methods	
	to Handle Them. Methods in Microbiology. Elsevier, Academic	
	Press, 2006.	
	17. Swain, P. el al., Fish and Shellfish Immunology. Elsevier, 2006.	
Course	On completion of the course, students will	
Outcomes:	1. be able to comprehend the uses and significance of marine	
	organisms.	
	2. gain a deep insight about the potential applications of marine	
	organisms in the field of Biotechnology.	
	3. acquire knowledge about the threats associated with marine	
	bioresources.	
	4. get an overview about aquaculture diseases and their diagnosis.	