Title of the Course: TECHNIQUES AND INSTRUMENTATION IN MICROBIOLOGY [P]

Course Code: MIC-505

Number of Credits: 1, Practical

Contact hours: 30

Effective from Academic Year: 2022-23

Prerequisites	The student should be familiar with the concepts of biochemistry	
	and Microbiology.	
Objective:	This course develops the concepts of various techniques,	
	methodology and instruments involved in studying the microbial	
	cells and their products.	
Content:		(30)
1.	Analysis of the microbial cell structure using Phase contrast	
	Microscopy.	
2.	Counting of bacterial cells using epifluorescence microscopy.	
3.	Cell disruption by sonicator and efficacy of sonication.	
4.	Density gradient separation of microbial cells.	
5.	Extraction of microbial pigments and profiling using UV-Vis	
	spectroscopy.	
6.	Silica gel based adsorption chromatography for separation of	
	pigments	
7.	Native Polyacrylamide gel electrophoresis (PAGE) for protein	
	separation and Zymogram (Amylase or Protease).	
8	Demonstration of HPLC, FT-IR, GC and spectral analysis.	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	Arora MP.Biophysics, Himalaya Publishing House, New Delhi	
Readings	(2020)	
	Bajpai P.K. Biological Instrumentation & methodology, 2 nd revised	
	Cooper T. G. The Tools of Biochemistry Wiley India Byt. Ltd	
	Colowick S. P. and Kanlan, N. O. Methods in Enzymology, Vol. VI	
	Academic Press, N.Y. (2013)	
	Goswami, C., Paintal, A. and Narain, R., Handbook of	
	Bioinstrumentation, Wisdom Press, New Delhi. (2011)	
	Jayaraman, J., Laboratory Manual in Biochemistry, John Wiley &	
	Sons Limited, Australia. (2011)	
	Mahesh S. Biotechnology-3. Including Molecular Biology and	
	(2018)	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology. Volume	
	5, Part B, Academic Press. (1971)	
	Parakhia, M. V., Tomar, R. S., Patel, S. and Golakiya, B. A.,	
	Molecular Biology and Biotechnology: Microbial Methods, New	
	India, Pitampura. (2010)	
	Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A	

	Laboratory Manual, Cold Spring Harbor Laboratory Press, USA. (2012)
	Wilson, K. and Walker, J., Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press, N.Y., USA. (2018)
Course Outcomes	 Analyse the microbial cell structures. Examine the microbial metabolites and biomolecules.
	 Develop various methods for the processing of microbial cells and their products.
	 Interpret the activities of biomolecules.