Title of the Course: ARCHAEA - ECOLOGY, PHYSIOLOGY, BIOCHEMISTRY AND GENETICS [T]

, diversity, cell
in Archaea (15)
s of life – Archaea, 2
5S rRNA analysis.
eubacteria and
er extremophilic
3
ydrothermal vent,
ataras, Antarctica,
Thermophilic and
cs.
3
ogical versatility,
Groups
Nethanobacterium
cterium halobium)
cidophilum); (iv)
rmoproteus
lizers
ohilic (<i>Sulfolobus</i>
4
valsbyi
lis

	Envelopes; membrane lipids and cell wall, ribosomes, histones-	
	nucleosomes appendages -pili, flagella, cannulae, hami,	
	d) Novel hig-molecules: Glycerol diether molecies and macrocyclic	
	linid onzymos co-onzymos: mothanontorin formaldohydo	
	activation factor Component D. Coopering M. 5420 5420	
	activation factor, component B, coenzyme M, F420, F430,	
	corrinoids.	
1.5	Significance of Archaea in Biotechnology and Biogeochemical cycling	3
	a) Pyrococcus furiosus- Pfu Polymerase in Molecular studies	
	b) <i>Halobacterium salinarum</i> – Bacteriorhodopsin	
	c) Thermococcus gammatolerans - To improve DNA repair and	
	reduce cellular aging	
	d) Methanosarcina – Methane production	
2.	Metabolism and Energetics of Archaea	(15)
21	Modified anabolic nathways:	5
2.1	a) Gluconeogenesis	
	b) Lipid biosynthesis	
	c) Methanogenesis: from CO_2 and methanol	
	d) Acetoclastic reactions in <i>Methanosarcina</i> - H_2 dependent and H_2	
	independent; and <i>Methanothrix</i>	
	e) Carbon dioxide reduction pathways: 3-hydroxypropionate	
	pathway, and reverse Kreb cycle	
	f) Bacterioruberin pathway	
2.2	Modified catabolic pathways:	5
	a) EMP	
	b) ED: Semiphosphorylative and Nonphosphorylative ED pathway	
2.2	c) Chemolithoautotrophy: S oxidation	-
2.3	Bioenergetics: ATP synthesis	5
	(i) respiration-driven : Anaerobic	
	a) light-driven: balorhodopsin	
	c) cation-driven	
3.	Genome of Archaea	(15)
3.1	Size of genome, G + C content, archaeal histories (Sul7d, MC1).	5
	chaperonins and heat shock proteins in archaea, introns in archaea	
	archaeal RNA polymerases, reverse DNA gyrase	
2.2	DNA realization transprintion and translation in probable	-
5.2	Diversity transcription and translation in archaea.	2
	Plasmids, transposons and insertion elements, Al-rich-islands,	
	Modifications in tRNA and rRNA structure. Novel 75 rRNA.	
3.3	Gene organization in Archaea: Operons (fdh, his and mcr).	5
	DNA repair in archaea.	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	Barker, D. M., Archaea: Salt-lovers, Methane-makers, Thermophiles	
Readings	and Other Archaeans, Crabtree Publishing Company. (2010)	

	Blum, P., Archaea: New Models for Prokaryotic Biology, Academic Press. (2008)	
	Boone, D. R. and Castenholz, R. W., Bergey's Manual of Systematic Bacteriology: The Archaea and The Deeply Branching and Phototrophic Bacteria, Springer Science and Business Media. (2011)	
	Cavicchioli, R., Archaea: Molecular and Cellular Biology, ASM Press. (2007)	
	Corcelli, A. and Lobasso, S., Characterization of Lipids of Halophilic Archaea. Methods in Microbiology, 35: 585-613. (2006)	
	Garrett, R. A. and Hans-Peter, K., Archaea: Evolution, Physiology and Molecular Biology, John Wiley and Sons. (2008)	
	Howland, J. L., The Surprising Archaea: Discovering Another Domain of Life, Oxford University Press. (2000)	
	Munn, C., Marine Microbiology: Ecology and Applications, Garland Science, Taylor and Francis Group, N.Y. (2011)	
	Rothe, O. and Thomm, M., A simplified method for the cultivation of extreme anaerobic archaea based on the use of sodium sulfite as reducing agent, Extremophiles. 4: 247-252. (2000)	
	Woese, C. R., Fox, G. E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 74: 5088–5090. (1977)	
Course Outcomes	 Describe the ecology, physiology and biochemistry of the domain Archaea. Integrate the metabolism and physiology of Archaea. Relate the Principle of Archaeal Genetics. Appraise the application of Archaea and archaeal bioactive 	