Title of the Course: **GENETIC ENGINEERING [P]**

Course Code: MIC-624

Number of Credits: 1, Practical

Contact hours: 30

Effective from Academic Year: 2022-23

selection media and preparatory microbiology. • Hands-on experience of the workflow of a typical genetic engineering experiment. Content: 1. Restriction mapping of bacterial plasmid. 2. Assessment of DNA ligation activity of T4 DNA ligase 3. Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings • Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). • Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). • Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). • Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). • Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). • Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). • Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). • Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). • Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes • Apply the technique of restriction mapping; • Clone a desired gene in a prokaryotic system. • Interpret experimental results on the basis of gel profiles. • Design experiments for obtaining specific outcomes in gene	Prerequisites	Theoretical understanding of chromosomal DNA, plasmid DNA,	
Objective: - Hands-on experience of the workflow of a typical genetic engineering experiment. (30) 1. Restriction mapping of bacterial plasmid. 2. Assessment of DNA ligation activity of T4 DNA ligase 3. Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings - Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). - Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). - Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). - Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). - Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). - Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). - Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). - Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). - Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). - Apply the technique of restriction mapping; - Clone a desired gene in a prokaryotic system Interpret experimental results on the basis of gel profiles Design experiments for obtaining specific outcomes in gene			
Content: Content: Restriction mapping of bacterial plasmid. Assessment of DNA ligation activity of T4 DNA ligase Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. Pedagogy: Experiments in the laboratory References/ Readings Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Outcomes Design experiments for obtaining specific outcomes in gene	Objective:		
1. Restriction mapping of bacterial plasmid. 2. Assessment of DNA ligation activity of T4 DNA ligase 3. Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings 8. Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). 9. Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). 9. Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). 10. Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). 11. Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). 12. Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). 13. Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). 14. Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). 15. Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). 16. Course 17. Outcomes 18. Apply the technique of restriction mapping; 18. Outcomes 18. Apply the technique of restriction mapping; 29. Clone a desired gene in a prokaryotic system. 20. Interpret experimental results on the basis of gel profiles. 20. Design experiments for obtaining specific outcomes in gene	•		
2. Assessment of DNA ligation activity of T4 DNA ligase 3. Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Outcomes Design experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene	Content:		(30)
3. Preparation of competent cells and transformation of <i>E. coli</i> host with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings • Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). • Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). • Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). • Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). • Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). • Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). • Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). • Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). • Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes • Apply the technique of restriction mapping; • Clone a desired gene in a prokaryotic system. • Interpret experimental results on the basis of gel profiles. • Design experiments for obtaining specific outcomes in gene	1.	Restriction mapping of bacterial plasmid.	
with plasmid DNA using heat shock method and electroporator; confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings	2.	Assessment of DNA ligation activity of T4 DNA ligase	
confirmation of positive transformants by blue-white screening. 4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Outcomes Course Outcomes Design experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene	3.	Preparation of competent cells and transformation of E. coli host	
4. Demonstration of insertional inactivation of marker gene. Pedagogy: Experiments in the laboratory References/ Readings		with plasmid DNA using heat shock method and electroporator;	
Pedagogy: Experiments in the laboratory References/ Readings Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene		confirmation of positive transformants by blue-white screening.	
References/ Readings Brown, T.A., Gene cloning and DNA Analysis: An Introduction, Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene	4.	Demonstration of insertional inactivation of marker gene.	
Blackwell Science (2020). Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Outcomes Outcomes Design experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene	Pedagogy:	Experiments in the laboratory	
 Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Molecular Biology, Elsevier (1994). Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 	•	, ,	
 Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier (2007). Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 		Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in	
 Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant DNA, ASM Press (2022). Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 		Gerhardt, P., Methods for General and Molecular Bacteriology,	
 Manipulation, Springer-Science+Business Media, B. V (2013). Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 		Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biotechnology: Principles and Applications of Recombinant	
 Manual, Cold Spring Harbor Laboratory, New York (2012). Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 			
Plasmid Technology, Academic Press (1990). Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press (2014). Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes Apply the technique of restriction mapping; Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene			
An introduction to Genetic Engineering, University of California Press (2014). • Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press (1997). Course Outcomes • Apply the technique of restriction mapping; • Clone a desired gene in a prokaryotic system. • Interpret experimental results on the basis of gel profiles. • Design experiments for obtaining specific outcomes in gene			
Press (1997). Course Outcomes Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene		An introduction to Genetic Engineering, University of California Press (2014).	
 Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. Design experiments for obtaining specific outcomes in gene 	-	, , , , , , , , , , , , , , , , , , , ,	
cloning and expression.		 Clone a desired gene in a prokaryotic system. Interpret experimental results on the basis of gel profiles. 	