Programme: M.Sc. (Microbiology)

Course Code: MIO 104

Title of the Course: MARINE MICROBIOLOGY [T]

Number of Credits: 3

Effective from Academic Year: 2018-19

Prerequisites	Basic understanding of the unique properties of water, features of	
1 i ci equisites	marine environments and microorganisms.	
Objective:	This course focuses on the various characteristics of marine	
Objective.	environments including the physico-chemical variables, climate	
	events, microbial habitats, the different marine microorganisms found	
	in seawater and their metabolic diversity, detection and enumeration	
	methods.	
Content:		
1.		(12)
1.1	Introduction to oceanography: the world's oceans and seas,	
	properties of seawater, physico-chemical factors in the marine	
	environment such as temperature, density, nutrients, salinity,	
	dissolved gases, waves, tides, oceanic currents, Ekman transport and	
	upwelling; oceanic phenomena such as Coriolis effect, eddies, gyres,	
	El Nino Southern Oscillation (ENSO).	
1.2	Marine microbial habitats: estuaries, mangroves, salt marshes, beach,	
	coastal ecosystems and coral reefs.	
2.	Marine microbes – bacteria, fungi, phytoplankton, zooplankton,	(12)
	viruses: their growth, physiology and contribution to ocean	
	processes	
2.1	Modes of microbial growth: viable but non-culturable (VBNC)	
	microorganisms, biofilms, microbial mats, epibiosis.	
2.2	Physiology of marine microbes: metabolic diversity, microbial	
	loop; marine snow; fermentation, aerobic respiration, anaerobic	
	respiration (denitrification, sulphate reduction, methanogenesis);	
	nitrification, annamox, sulphur oxidation, methanotrophy; carbon	
	dioxide fixation in autotrophs; the role of microorganisms in	
	biogeochemical cycling: carbon, nitrogen, phosphorous, sulphur,	
	iron.	
2	Mathada in marina mianahialagu	(12)
3. 3.1	Methods in marine microbiologySampling equipment: water samplers such as Niskin sampler, Hydro-	(12)
J.1		
	Bios sampler, Rosette samplers; sediment samplers such as van Veen grabs and corers.	
3.2	0	
3.2	Analysis of primary productivity: the radiocarbon method	
3.3	Analysis of bacterial productivity: the thymidine uptake method	
3.4	Measurement of respiration rates: light-dark bottle method	
3.5	Tools to study marine microbial diversity: flow cytometry,	
	molecular approaches such as metagenomics and community	
	fingerprinting.	

Dedege	Lasturas/tutorials/aggignments/galf study	
Pedagogy:	Lectures/tutorials/assignments/self-study	
D A (
References/	Belkin, S. and Colwell, R. R., Ocean & Health: Pathogens in the	
Readings	Marine Environment, Springer.	
	Grasshoff, K., Ehrhardt, M. and Kremling, K., Methods of Seawater	
	Analysis, Verlag Chem., Weinheim.	
	Hunter-Cevera, J., Karl, D. and Buckley, M., Marine Microbial	
	Diversity: the Key to Earth's Habitability, American Academy of	
	Microbiology.	
	Meller, C. B., Wheeler, P. A., Biological Oceanography, Wiley-	
	Blackwell Publishers.	
	Mitchell, R. and Kirchman, D. L., Microbial Ecology of the Oceans,	
	Wiley- Blackwell Publishers.	
	Munn, C., Marine Microbiology: Ecology and Applications, Garland	
	Science, Taylor and Francis, N.Y.	
	Nybakken, J. W. and Bertness, M. D., Marine Biology: an Ecological	
	Approach, Benjamin Cummings, San Francisco.	
	Parsons, T. R., Maita, Y. and Lalli, C. M., Manual of Chemical and	
	Biological Methods for Seawater Analysis, Pergamon Press, New	
	York.	
	Strickland, J. D. H. and Parsons, T. R., A Manual of Seawater	
	Analysis, Queen's Printer and Controller of Stationery, Ottawa.	
	Sournia, A., UNESCO Monographs on Oceanographic Methodology,	
	Vol. 6, Phytoplankton Manual, UNESCO Publishing, Paris.	
	Tomas, C. R., Identifying Marine Phytoplankton, Academic Press,	
	San Diego, CA.	
Learning	1. Explain the concept of marine environments and the factors	
Outcomes	governing them.	
	2. Apply the principles of marine microbiology to understand the	
	biological phenomena occurring in marine environments.	