Programme: M.Sc. (Microbiology)

Course Code: MIO 108

Title of the Course: GENETIC ENGINEERING (T)

Number of Credits: 3

Effective from Academic Year: 2018-19

Prerequisites	Knowledge of bacterial and animal genetics, basic molecular and	
	microbiology is a prerequisite.	
Objective:	This course aims to introduce the fundamental tools and techniques	
	required for molecular cloning, with emphasis on DNA editing to	
	protein expression in wide variety of hosts. Applications of genetic	
	engineering in agriculture, therapeutics and industry will be covered.	
Content:		
1.	Introduction to genetic engineering and tools involved in genetic	(16)
	manipulation	
1.1	Introduction to genetic engineering	
1.2	Tools and techniques involved in genetic manipulation	
А.	DNA modifying enzymes: restriction endonucleases, exonucleases,	
	DNA ligases (T4 DNA Ligase and E.coli DNA ligase), Terminal	
	DNA transferase, DNA Polymerases (Taq, Amplitaq, vent, Exo-vent,	
	Pfu, T4 etc), Reverse transcriptase, T4 polynucleotide kinases,	
	Alkaline phosphatase, S-1 Nuclease, Mung bean nuclease, RNases.	
B.	Gene cloning systems/Hosts: Gene cloning in E. coli and other	
	organisms such as Bacillus subtilis, Saccharomyces cerevisiae and	
	other microbial eukaryotes.	
C.	Cloning vectors: plasmid (pUC19, pBR 322), λ phage based vectors,	
	cosmid vectors, Phasmid vectors, shuttle vectors, High capacity	
	Cloning vectors (BAC and YACs).	
D.	Sequencing Vectors: pUC 19 and M-13 Phage vector.	
E.	Expression vectors: Prokaryotic (pET, pGEX-2T and others).	
	Characteristics of expression vectors: strong bacterial and viral	
	promoters (lac, trp, tac, SV 40, T7, T3) for induction of gene	
	expression.	
F.	Construction of rDNA molecule and it's transfer to appropriate host	
	(bacteria/yeast/plant cell/animal cell) using a suitable technique:	
	transformation, electroporation, transfection, gene gun.	
G.	Other Recombinant DNA techniques: Use of radioactive and non-	
0.	radioactive nucleotides for DNA probe preparation and detection of	
	hybrids, Gel retardation assay, Restriction mapping, RFLP, PCR, RT-	
	PCR, Real time PCR, Microarray, DNA sequencing using Sanger's	
	Dideoxy chain termination method and automated sequencer;	
	chromosome walking, Hybrid release and hybrid arrest translation to	
	screen clones, site directed mutagenesis.	

2.	Application of Genetic Engineering in Biology, forensics and medicine	(10)
2.1	Application of genetic engineering in DNA diagnostics and	
	production of recombinant drugs, vaccines and hormones	
А.	Screening of Genetic diseases using DNA probes (DNA diagnostics).	
B.	Production of recombinant proteins and drugs (insulin, tissue	
	plasminogen activator, erythropoietin, human growth hormones,	
	Antibodies (including bispecific antibodies), vaccines, interferons,	
	DNA vaccines: merits and demerits, Edible vaccines- merits and	
C.	demerits.	
C.	Application of recombinant DNA technology in solving parental dispute and criminal cases (DNA finger printing).	
2.2	dispute and emininal cases (DIVA miger printing).	
A.	Manipulation of gene expression in Prokaryotes; , gene expression	
11.	from strong and regulatable	
	promoters, Developing fusion proteins and separation of cloned	
	protein by protease induced cleavage.	
B.	Genetic manipulation to increase recombinant protein stability and	
	secretion using signal sequences.	
3.	Application of Genetic Engineering in Agriculture	(05)
3.1		
А.	Development of transgenic crops resistant to insect pests, bacterial,	
D	fungal and viral pathogens.	
В.	Strategies to develop transgenic crops and horticulture plants using	
	various tools of recombinant DNA technology: Development of Bt Brinjal, Golden Rice and flavr savr tomato.	
C.	Importance of Agrobacterium tumefaciens in genetic manipulation of	
С.	plants (Role of Ti plasmids), Role of <i>Bacillus thuringiensis</i> (<i>Bt</i>	
	genes) to develop insect pest resistant crops.	
4.	Application of Genetic Engineering in Industry	(02)
4.1	Genetic engineering of microbes for production of enzymes,	
	biomolecules and fermentation products.	
А.	Genetic manipulation of microbes to over-produce industrially	
D	valuable enzymes.	
В.	Production of microbial SCPs.	
5.	Application of Genetic engineering in Bioremediation,	(03)
5.	Biorecovery and Biomonitoring of xenobiotics, metals and	(03)
	organometals.	
5 1		
5.1	Genetic engineering of microbes for bioremediation and biomonitoring of toxic environmental pollutants,	
	Biohydrometallurgy	
A.	Microbial bioremediation of xenobiotics by recombinant microbes.	
B.	Bioremediation of toxic heavy metals and organometals by	
	recombinant microbes.	
C.	Biohydrometallurgy using recombinant microbes for recovery of	
	precious metals.	

Pedagogy:	Lectures/tutorials/assignments/self-study	
References /	Old, R. W. and Primrose, S. B., Principles of Gene Manipulation: An	
Readings	introduction to Genetic Engineering, University of California Press.	
	Glick, B. R., Pasternak, J. J. and Patten, C. L., Molecular	
	Biotechnology: Principles and Applications of Recombinant DNA, ASM Press.	
	Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press.	
	Glover, D. M., Gene cloning: The Mechanics of DNA Manipulation, Springer-Science+Business Media, B. V.	
	Green, M. R. and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.	
	Davis, L. G., Dibner, M. D. and Battey, J. F., Basic Methods in Molecular Biology, Elsevier.	
	Gerhardt, P., Methods for General and Molecular Bacteriology, Elsevier.	
	Grinsted, J. and Bennett, P. M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press.	
Learning	1. Understanding of tools and techniques involved in molecular	
Outcomes	cloning.	
	2. Overall understanding about the importance of GMOs, GMPs and other engineered products in science and industry.	