	measure, Karl Pearson's Coefficient, Bowley's Coefficient, Kelly's	
	Measure, Moments.	
2.3	Correlation analysis – Correlation, covariance, correlation coefficient	
	for ungrouped data, Pearson's Rank Correlation coefficient, scatter and	
	dot diagram (graphical method).	
	Regression analysis - Linear and exponential function - DNSA	
	conversion by reducing sugar, survival/growth of bacteria, regression	
	coefficients, properties, standard error of estimates, prediction, regression	
	analysis for linearequation.	
3.		(15)
3.1	Probability: Probability, Combinatorial Techniques, Elementary Genetics,	
	Conditional Probability, Bayes' Rule, Statistical Independence, Binomial,	
	Poisson, Normal Distributions.	
3.2	Hypothesis Testing – parameter and statistics, sampling theory, sampling	
	and non-sampling error, estimation theory, confidence limits testing of	
	hypothesis, test of significance; Students' T-test, t-distribution,	
	computation, paired t-test.	
3.3	Chi-square test, F-test and ANOVA.	
Pedagogy:	Lectures/tutorials/assignments/MOODLE/Videos	
References /	Arora, P. N. and Malhan, P. K., Biostatistics, Himalaya Publishing	
Readings	House.	
(Latest	Cochran, WG and Snedecor, GW Statistical Methods. Iowa State	
editions)	University Press.	
	Danilina, N.I., Computational Mathematics, Mir Publishers.	
	Kothari, C. R., Quantitative Techniques, Vikas Publishing House.	
	Surya, R. K., Biostatistics, Himalaya Publishing House.	
Learning	Able to collect, handle, process, present and analyse the biological data.	
outcomes	Apply the principles of statistics to biological experiments.	

Programme: M.Sc. (Microbiology) Course Code: MIPC-404 Title of the Course: BIOSTATISTICS [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	Basic ability to handle numbers and calculation.	
Objective:	The paper develops concepts about types of data observed in biological	
	experiments, its handling and processing. It develops concepts of	
	hypothesis and formulation of experiments. It gives understanding of	
	various statistical operations needed to process the biological data.	
Content:		(30)
1.	Excel spreadsheet and data analysis	
2.	Linear equation analysis (regression analysis).	
3.	Normal distribution.	
4.	Hypothesis testing (T Test, Z test)	

5.	Application of other software (graphpad / systat) for statistical analysis	
Pedagogy:	Experiments in the laboratory, data collection and processing.	
References /	As given under respective Theory Course MITC-404	
Readings		
Learning	Able to collect, handle, process and present the microbiology-related data.	
outcomes	Apply the principles of statistics to biological experiments.	

Programme: M.Sc. (Microbiology) Course Code: MITC-405 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of	
	familiar with the distinguishing features of different groups of	
	microorganisms.	
Objective:	To introduce the concepts, tools and techniques of taxonomy and	
	systematics of the microbial world.	
	to introduce the salient features of various microbial groups and	
Content		
1.		(30)
1.1	Microbial taxonomy and systematics	
	Concepts of taxonomy (characterization, classification and	
	nomenclature) and systematics; binomial classification and taxonomic	
	hierarchy of microorganisms, three domain, six-kingdom, 8-kingdom	
	systems, Endosymbiotic theory.	
1.2	Phenotypic characters - Morphology, Biochemical tests (e.g. API,	
	BIOLOG), Bacteriophage typing, Serotyping.	
1.3	Chemotaxonomic markers - Cell wall components, lipid	
	composition, cellular fatty acid (FAME analysis), isoprenoid quinones,	
	protein profiles (e.g. MALDI-TOF), cytochrome composition,	
	polyamines.	
1.4	Nucleic acid based techniques – T-RFLP, G+C content (T _m and	
	HPLC); 16S rRNA / 18S rRNA / ITS gene sequencing; phylogenetic	
	analysis; DNA-DNA hybridization; DNA barcoding.	
1.5	Concepts of species, numerical taxonomy and polyphasic taxonomy.	
2.	Salient features of phylum, class and orders with representative	(15)
	examples of the following - Archaea, Eubacteria (bacteria,	
	cyanobacteria, actinomycetes), Mycota, Protista (algae, protozoa,	
	diatoms); and viruses.	