	Y . <i>I</i> , . • 1 <i>I</i> • .	
Pedagogy:	Lectures/tutorials/assignments	
References /	Barlow, A., The prokaryotes: A Handbook on the Biology of	
Readings	Bacteria: Ecophysiology, Isolation, Identification, Applications,	
	Volume 1, Springer-Verlag.	
(Latest	Goodfellow, M. and Minnikin, D. E., Chemical Methods in	
editions)	Bacterial Systematics, The Society for Applied Bacteriology.	
	Technical Series No. 20, Academic Press.	
	Goodfellow, M., Mordarski, M. and Williams, S. T., The biology of	
	the actinomycetes, Academic Press.	
	Kurtzman, C. P., Fell, J. W. and Boekhout, T., The Yeasts - A	
	Taxonomic Study, Elsevier.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology, Vol. 18	
	& 19, Academic Press.	
	Prescott, L. M., Harley, J. P. and Klein, D.A., Microbiology.	
	McGraw Hill, New York.	
	Reddy, C. A., Methods for General and Molecular Microbiology,	
	ASM Press.	
	Sneath, A. H. P., Mair, S. N. and Sharpe, E. M., Bergey's Manual of	
	Systematic Bacteriology Vol. 2. Williams & Wilkins Bacteriology	
	Symposium, Series No 2, Academic Press, London/New York.	
Learning	1. Apply knowledge of the standard rules of classification	
Outcomes	systems to categorize microorganisms.	
	2. Appreciate and explain the dynamic and ever developing	
	nature of the field of microbial taxonomy and systematics.	

Programme: M.Sc. (Microbiology) Course Code: MIPC-405 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of binomial nomenclature, the basis of classification systems and be familiar with the distinguishing features of different groups of microorganisms.	
Objective:	To understand the tools and techniques of taxonomy and systematics of the microbial world.	
Content:		(30)
1.	Morphological, physiological and biochemical characterization of	
	bacteria.	
2.	Chemotaxonomic analysis of cell wall amino acids.	
3.	Characterization of actinomycetes (Streptomyces sp.).	
4.	Characterization of yeast (Saccharomyces cerevisiae,	
	Schizosaccharomyces pombe).	
5.	Characterization of cyanobacteria.	

6.	Phylogenetic analysis of bacterial 16S rRNA sequences - retrieval of	
	sequences from standard databases, BLAST analysis, construction of	
	phylogenetic tree using bioinformatics tools.	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	As given under Theory Course MITC-405	
Readings		
Learning	Apply knowledge of the standard techniques of classification	
Outcomes	systems to categorize and identify microorganisms.	

Programme: M.Sc. (Microbiology) Course Code: MITC-406 Title of the Course: INDUSTRIAL MICROBIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

D	Desis la serie de la set de temper d'united and de la set de la set	1
Prerequisites	Basic knowledge about the types of microbes and their products of	
	industrial relevance. Knowledge of microbial biochemistry,	
	physiology, genetics and statistics.	
Objective:	To comprehend concepts of the processes, instruments,	
	management and quality used in the industries to produce the	
	products using microorganisms.	
Content:		
1.		(15)
1.1	History of Industrial Microbiology, fermentation processes,	
	descriptive layout and components of fermentation process for	
	extracellular and intracellular microbial products.	
1.2	Microbial growth kinetics:	
	Batch kinetics – Monod's model (single substrate), deviations from	
	Monod's model, dual substrates – sequential utilization, multiple	
	substrates – simultaneous utilization, substrate inhibition, product	
	synthesis (primary and secondary metabolite), toxic inhibition,	
	death constant.	
1.3	Microbial growth kinetics:	
	Fed-batch kinetics – fixed volume, variable volume and cyclic fed-	
	batch, applications and examples of fed-batch systems.	
	Continuous cultivation system – relationship between specific	
	growth rate (μ) and dilution rate, multistage systems, feedback	
	systems (internal and external feedback), applications and examples	
	of continuous cultivation system; comparison between various	
	cultivation systems.	
2.		(15)
2.1	Optimization and modeling of fermentation process – single	
	variable design, multivariate screening designs, critical factor	
	analysis, optimization designs for two or more factor, singlet	