Programme: M.Sc. (Microbiology) Course Code: MITC-402 Title of the Course: MICROBIAL GENETICS [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students have basic knowledge of Mendelian genetics, structure of DNA and RNA, Prokaryotic and eukaryotic genome organisation, mutation concept, basic knowledge about	
	replication, transcription.	
Objective:	This course develops concept of Classical Mendelian genetics and deviation from Mendelian principles, Microbial genome organization (Prokaryotic and Eukaryotic), Viral Genetics, Mutagenesis and Bacterial plasmids.	
	Understanding the concepts of replication, transcription and their regulation in prokaryotes and microbial eukaryotes.	
Content:		
1.	Microbial genome organization, gene regulation and genetic transfer	(15)
1.1	Classical Mendelian genetics; deviation from Mendelian principles; Origin of mitochondria and plastids – Endosymbiotic theory, DNA in Mitochondria and plastids, Mitochondrial and plastid genes inherited by	
1.2	Non-Mendenan mechanism; introduction to epigenetic inneritance.	
1.2	 Prokaryotic & Eukaryotic genome size & structure, exceptions in prokaryotic genome (linear chromosome in <i>Borrelia burgdorferi</i>); Introduction to synthetic genome (<i>Mycoplasma genitalium</i>), pseudogenes and their significance, C-value paradox, polyploidy in prokaryotes. Prokaryotic and Eukaryotic replication, transcription and regulation. Structure of Prokaryotic genes (lac and trp operon) and Eukaryotic Genes (interrupted Genes, intron splicing mechanisms). Microbial gene transfer (Conjugation, transformation, transduction). 	
1.3	Genomic organization, replication and regulation of Lytic and Lysogenic	
	Phages - T4 and Lambda Phage	
2.	Genomic Rearrangements and Mutagenesis	(15)
2.1	Mechanism of General and programmed DNA rearrangements, Antigenic and phase variation in bacteria. Transposons: IS elements – Composite transposons (Tn3, Tn10), Ty, Copia and P type, Mechanism of transposition. Role of transposons in DNA rearrangements, microbial genome evolution and drug resistance. Deletion, duplication, inversion, translocation. Integrons and Genomic islands - pathogenicity islands.	
2.2	Mutagenesis, mutation and mutants: Somatic and germinal mutation,	
	spontaneous and induced mutations, site directed mutagenesis using PCR and cassette mutagenesis, and random mutagenesis. Tautomeric shift,	

	transition, transversion; Concept of clustered regularly interspaced short	
	palindromic repeats (CRISPR) - Cas9.	
	DNA Damage: Thymine dimer, apyrimidinic site and apurinic site, cross	
	linking, deamination of base, base mismatch.	
	Types of mutations: silent mutation, missense mutation, nonsense	
	mutation, Read through mutation, frameshift- insertion and deletion	
	mutation, suppressor mutation, leaky mutation.	
	Mutagenic chemicals and radiations and their mechanism of action:	
	Base analogues (5-Bromouracil and 2-amino purines) alkylating agents	
	(EMS_NTG) Intercalating agents (acridines Acriflavins)	
	Hydroxylamine: mutagenic radiations, IV X-rays and gamma rays	
	A mas test: Auxotrophy Importance of mutations	
2	Ames test, Auxonophy. Importance of mutations.	(07)
3.	Fungai Genetics: Yeast - Saccharomyces cerevisiae/	(07)
	Schizosaccharomyces pombe and Neurospora genomes as model genetic	
	systems; Chromosome replication, 2μ plasmid, Yeast Artificial	
	Chromosomes (YAC), tetrad analysis, genetic compatibility and non-	
	compatibility genes, heterokaryosis, Parasexuality, Petite mutants of	
	yeast, Killer yeast.	
4	Bacterial plasmids: Types of plasmids F plasmids and their use in	(08)
	genetic analysis- F^+/Hfr cells/ F'cells. Col plasmids. R plasmids- plasmids	(00)
	with genes encoding metal resistance and antibiotic resistance - efflux	
	nump/MDR bacteria degradative plasmids. Ti plasmid	
	Replication in plasmids. Concept of conv. number (Col Plasmid) and	
	compatibility: Bacterial plasmids as research tools	
	compationity, Dacterial plasmids as research tools.	
Pedagogy:	Lectures/tutorials/assignments	
References /	Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K.	
Readings	and Walter, P., Molecular Biology of the Cell, Garland Science.	
(Latest	Birnboim, H.C. and Doly, J., (1979) A rapid alkaline extraction	
Editions)	procedure for screening recombinant plasmid DNA. Nucleic Acid	
	Research, 7: 1513-1523.	
	Dale, J.W. and Park, S.F., Molecular Genetics of Bacteria, John Wiley	
	prohomotor of automators IANE'S PUPI ISHING INC POSTON	
	MA(USA)	
	Gardner E I Simmons M I and Snustad D P Principles of	
	Genetics, John Wiley & Sons.	
	Green, M. R. and Sambrook, J., Molecular Cloning: A laboratory	
	manual, Cold Spring Harbour Laboratory Press, New York.	
	Holmes, D.S. and Quigley, M., (1981) A rapid boiling method for the	
	preparation of bacterial plasmids. Anal Biochem., 114(1): 193-197.	
	Krebs J.E., Lewin B., Goldstein E.S. and Kilpatrick, S.T., LEWIS	
	Genes XI, Jones and Bartlett Publishers.	
	Maloy, S. R., Cronan, J. E. and Freifelder, D., Microbial Genetics,	
	Jones and Bartlett Publishers.	

	Peter, J. R., <i>i</i> Genetics: A Molecular Approach, Pearson Education.
	Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A
	Laboratory Manual, Cold Spring Harbor Laboratory, New York.
	Streips, U.N. and Yasbin, R.E., Modern Microbial Genetics, John
	Wiley.
	Synder, L., Peters, J. E., Henkin, T. M. and Champness, W.,
	Molecular Genetics of Bacteria, ASM Press.
	Trun, N. and Trempy, J., Fundamental Bacterial Genetics, John Wiley
	& Sons.
	Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., Losick,
	R. Molecular Biology of the Gene, Pearson/Benjamin Cummings
Learning	1) Explains principles/concept of prokaryotic and eukaryotic
Outcomes	genetics, viral genetics and their application.
	2) Learn Mutagenesis, mutation and mutants and their
	significance in evolution.
	3) Understanding the concepts of bacterial and eukaryotic
	plasmids.

Programme: M.Sc. (Microbiology) Course Code: MIPC-402 Title of the Course: MICROBIAL GENETICS [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	Students should have basic knowledge of DNA and RNA structure and Prokaryotic and eukaryotic genome.	
Objective:	To learn the basic principles and techniques of microbial genetics.	
Content:		(30)
1.	Isolation of genomic DNA from bacteria.	
2.	Isolation of plasmid DNA from bacterial cells by Alkaline Lysis method.	
3.	Spectrophotometric quantification and determination of purity of bacterial plasmid and genomic DNA.	
4.	Agarose gel electrophoresis, visualization and documentation of plasmid and genomic DNA using Gel Doc system.	
5.	UV mutagenesis and screening of pigment deficient mutants of <i>Serratia marcescens</i> .	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/ Readings	As given under Theory Course MITC-402	
Learning Outcomes	 Understanding the principles and concept of Prokaryotic DNA isolation and purification. Exposure to the basic techniques of Mutagenesis. 	