5.	Application of other software (graphpad / systat) for statistical analysis	
Pedagogy:	Experiments in the laboratory, data collection and processing.	
References /	As given under respective Theory Course MITC-404	
Readings		
Learning	Able to collect, handle, process and present the microbiology-related data.	
outcomes	Apply the principles of statistics to biological experiments.	

Programme: M.Sc. (Microbiology) Course Code: MITC-405 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of	
	familiar with the distinguishing features of different groups of	
	microorganisms.	
Objective:	To introduce the concepts, tools and techniques of taxonomy and	
	systematics of the microbial world.	
	to introduce the salient features of various microbial groups and	
Content		
1.		(30)
1.1	Microbial taxonomy and systematics	
	Concepts of taxonomy (characterization, classification and	
	nomenclature) and systematics; binomial classification and taxonomic	
	hierarchy of microorganisms, three domain, six-kingdom, 8-kingdom	
	systems, Endosymbiotic theory.	
1.2	Phenotypic characters - Morphology, Biochemical tests (e.g. API,	
	BIOLOG), Bacteriophage typing, Serotyping.	
1.3	Chemotaxonomic markers - Cell wall components, lipid	
	composition, cellular fatty acid (FAME analysis), isoprenoid quinones,	
	protein profiles (e.g. MALDI-TOF), cytochrome composition,	
	polyamines.	
1.4	Nucleic acid based techniques – T-RFLP, G+C content (T _m and	
	HPLC); 16S rRNA / 18S rRNA / ITS gene sequencing; phylogenetic	
	analysis; DNA-DNA hybridization; DNA barcoding.	
1.5	Concepts of species, numerical taxonomy and polyphasic taxonomy.	
2.	Salient features of phylum, class and orders with representative	(15)
	examples of the following - Archaea, Eubacteria (bacteria,	
	cyanobacteria, actinomycetes), Mycota, Protista (algae, protozoa,	
	diatoms); and viruses.	

Pedagogy:	Lectures/tutorials/assignments	
References/	Barlow, A., The prokaryotes: A Handbook on the Biology of	
Readings	Bacteria: Ecophysiology, Isolation, Identification, Applications,	
	Volume 1, Springer-Verlag.	
(Latest	Goodfellow, M. and Minnikin, D. E., Chemical Methods in	
editions)	Bacterial Systematics, The Society for Applied Bacteriology.	
	Technical Series No. 20, Academic Press.	
	Goodfellow, M., Mordarski, M. and Williams, S. T., The biology of	
	the actinomycetes, Academic Press.	
	Kurtzman, C. P., Fell, J. W. and Boekhout, T., The Yeasts - A	
	Taxonomic Study, Elsevier.	
	Norris, J. R. and Ribbons, D. W., Methods in Microbiology, Vol. 18	
	& 19, Academic Press.	
	Prescott, L. M., Harley, J. P. and Klein, D.A., Microbiology.	
	McGraw Hill, New York.	
	Reddy, C. A., Methods for General and Molecular Microbiology,	
	ASM Press.	
	Sneath, A. H. P., Mair, S. N. and Sharpe, E. M., Bergey's Manual of	
	Systematic Bacteriology Vol. 2. Williams & Wilkins Bacteriology	
	Symposium, Series No 2, Academic Press, London/New York.	
Learning	1. Apply knowledge of the standard rules of classification	
Outcomes	systems to categorize microorganisms.	
	2. Appreciate and explain the dynamic and ever developing	
	nature of the field of microbial taxonomy and systematics.	

Programme: M.Sc. (Microbiology) Course Code: MIPC-405 Title of the Course: MICROBIAL TAXONOMY AND SYSTEMATICS [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of binomial nomenclature, the basis of classification systems and be familiar with the distinguishing features of different groups of microorganisms.	
Objective:	To understand the tools and techniques of taxonomy and systematics	
	of the microbial world.	
Content:		(30)
1.	Morphological, physiological and biochemical characterization of	
	bacteria.	
2.	Chemotaxonomic analysis of cell wall amino acids.	
3.	Characterization of actinomycetes (Streptomyces sp.).	
4.	Characterization of yeast (Saccharomyces cerevisiae,	
	Schizosaccharomyces pombe).	
5.	Characterization of cyanobacteria.	