6.	Phylogenetic analysis of bacterial 16S rRNA sequences - retrieval of	
	sequences from standard databases, BLAST analysis, construction of	
	phylogenetic tree using bioinformatics tools.	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	As given under Theory Course MITC-405	
Readings		
Learning	Apply knowledge of the standard techniques of classification	
Outcomes	systems to categorize and identify microorganisms.	

Programme: M.Sc. (Microbiology) Course Code: MITC-406 Title of the Course: INDUSTRIAL MICROBIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

D	Desis la serie de la set de temper d'united and de la set de la set	1
Prerequisites	Basic knowledge about the types of microbes and their products of	
	industrial relevance. Knowledge of microbial biochemistry,	
	physiology, genetics and statistics.	
Objective:	To comprehend concepts of the processes, instruments,	
	management and quality used in the industries to produce the	
	products using microorganisms.	
Content:		
1.		(15)
1.1	History of Industrial Microbiology, fermentation processes,	
	descriptive layout and components of fermentation process for	
	extracellular and intracellular microbial products.	
1.2	Microbial growth kinetics:	
	Batch kinetics – Monod's model (single substrate), deviations from	
	Monod's model, dual substrates – sequential utilization, multiple	
	substrates – simultaneous utilization, substrate inhibition, product	
	synthesis (primary and secondary metabolite), toxic inhibition,	
	death constant.	
1.3	Microbial growth kinetics:	
	Fed-batch kinetics – fixed volume, variable volume and cyclic fed-	
	batch, applications and examples of fed-batch systems.	
	Continuous cultivation system – relationship between specific	
	growth rate (μ) and dilution rate, multistage systems, feedback	
	systems (internal and external feedback), applications and examples	
	of continuous cultivation system; comparison between various	
	cultivation systems.	
2.		(15)
2.1	Optimization and modeling of fermentation process – single	
	variable design, multivariate screening designs, critical factor	
	analysis, optimization designs for two or more factor, singlet	

	method; Metabolic and flux control analysis.	
2.2	Bioreactor design and operation: classification of reactors; Ideal mixed v/s plug flow reactor; designing parameters for reactors (stirred tank reactor, airlift reactor, plug flow reactor), rheology of fermentation broth.	
2.3	Bioreactor design and operation: gas-liquid mass transfer, heat transfer, analysis of dimension less parameters and their application (aeration number, power number and Reynold's number; Scale-up of bioprocesses: parameters used in scale-up and problems associated with scale-up.	
3.		(15)
3.1	Solid substrate fermentation (SSF): Principles and application;Comparison between SSF and Submerged Fermentation (SmF),Bioreactor for SSF.Problems in fermentation process and handling (foam,contamination, strain degeneration, etc),Immobilized enzymes and cell systems.	
3.2	Fermentation monitoring and control: Common measurement and control systems (speed, temperature, gas, pH, Dissolved oxygen, foam, redox, air flow, weight, pressure, biomass), On-line and off-line analysis, Digital controllers, control algorithm, flow charting, incubation control, advanced fermentation control and computer-based automation of process.	
3.3	Industrial scale Down-stream processing and product recovery: principle and general description of instrumentation, Recovery of particulates (cells and solid particles), recovery of intracellular products, primary isolation (extraction, sorption), precipitation, industrial processes for chromatography and fixed bed adsorption, membrane separations; Type Processes - Antibiotic (Penicillin including semi-synthetic), Ethanol.	
Pedagogy: References/ Readings (Latest editions)	 Lectures/tutorials/assignments/Moodle/Videos Atkinson, B. and Mavituna, F., Biochemical Engineering and Biotechnology Handbook, Stockton Press. Demain, A. L., Davies, J. E. and Atlas, R. M. Manual of Industrial Microbiology and Biotechnology, ASM Press. Flickinger, M. C. and Drew S. W., The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Volumes 1 - 5, John Wiley Publisher. Stanbury, P. F., Whitaker, A. and Hall, S.J., Principles of Fermentation Technology, Butterworth-Heinemann Publishers. Vogel, H. C. and Tadaro, C. M., Fermentation and Biochemical Engineering Handbook: Principles, Process Design and Equipment, William Andrew Publisher. 	

Learning Outcomes	 Apply the principle of management and controls on the microbial processes in industrial settings. Apply the understanding of physiological principles in improvement of the industrial processes. 	

Programme: M.Sc. (Microbiology) Course Code: MIPC-406 Title of the Course: INDUSTRIAL MICROBIOLOGY [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	Basic knowledge about the types of microbes and their products of	
-	industrial relevance. Knowledge of microbial biochemistry,	
	physiology, genetics and statistics.	
Objective:	Development of concepts in the processes, instruments,	
	management, quality, etc.being used in the industries to produce the	
	products using microorganisms.	
Content:		(30)
1.	Designing of fermentor – stirred tank reactor.	
2.	Fermentation kinetics – growth of E.coli/S.cerevisiae and	
	determination of μ_{max} , Ks, Yx/s, m.	
3.	Rheology of substrate solutions.	
4.	Immobilization of microbial cells using alginate.	
5.	Baker's yeast – ISI/BSI quality assurance.	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References/	As given under Theory Course MITC-406	
Readings		
Learning	Able to manage the microbial process under industrial settings.	
Outcomes		

Programme: M.Sc. (Microbiology) Course Code: MITC-407 Title of the Course: MOLECULAR BIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that the students have a basic knowledge of DNA	
	(structure and replication), transcription and protein synthesis	
Objective:	To enhance the comprehension of concepts in molecular biology.	
Content:		
1.	Chromosome architecture and eukaryotic DNA replication	(15)
1.1	Nucleic acids, types of DNAs and DNA packaging	