2.	Identification of the isolates
2.1	Biochemical tests for characterization of the halophilic archaea.
2.2	Extraction of archaeal pigment and characterization using UV-Vis
	spectroscopy.
2.3	Cellular lipids - Extraction and chromatographic resolution of lipids.
3.	Screening for hydrolytic enzymes.
Pedagogy:	Hands-on experiments in the laboratory, video, online data
References/	As given under Theory Course MITC-408
Readings	
Learning	1. Skill development for Isolation, culturing of Archaea and
Outcomes	identification of archaea.
	2. Screening the archaea for bioactive molecules.

Discipline Specific Optional Courses

Programme: M.Sc. (Microbiology) Course Code: MITE-401 Title of the Course: ENVIRONMENTAL MICROBIOLOGY AND BIOREMEDIATION [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that the students have a basic knowledge of ecosystem	
	structure and environmental pollution.	
Objective:	To introduce the concepts of microbial diversity, community structure,	
	role of microorganisms in biogeochemical cycles, sustainable	
	development and bioremediation.	
Content:		
1.	Microbial Ecology	(15)
	Ecosystems: Concept of ecosystem, habitat, econiche. Components and	
	functioning of ecosystem, Microbial interactions with biotic	
	environment. Ecological pyramids, energy flow, food chain and food	
	web. Concepts of microbial guild, r and k selection concept, role of	
	microbes in ecological succession.	
	Microbial diversity in ecosystem and Community structure: The	
	expanse and estimates/measurement of microbial diversity- Rank-	
	abundance curve (species richness and eveness), indices of diversity	
	(Shannon index, simpson index, Gini-simpson index), Culture based	
	microbial diversity, Newer high throughput approaches (extinction	
	culture, diffusion chamber/ichip, gel micro droplet method, co-culture	
	method, flow cytometry) for exploring microbial diversity from	

	environmental samples.	
	Culture independent molecular methods (DGGE, FISH, phylochips,	
	metagenomic library) for understanding microbial community structure.	
	Metabolic diversity of microbial communities in diverse environments	
	(aquatic and terrestrial)	
	(aquatic and terrestriar).	
	Nicrobial biofilms in environment: Quorum sensing in bacteria;	
	Nature and significance, Microbial mat.	
2.	Biogeochemical processes, Pollution and sustainable devvelopment	(15)
	Biogeochemical cycles: Physiological, biochemical, microbiological	
	aspects of carbon, nitrogen, phosphorous, sulphur, Fe and Mn cycles.	
	Impacts of pollution on ecosystem and Concepts of sustainable	
	development: Effect of marine pollutants on productivity and	
	sustainability of aquatic and terrestrial econiche Eutrophication HABs	
	biomagnification Pallast water and significance of invasiva	
	biomagnification. Danast water and significance of invasive	
	microorganisms. Climate change and occurrence of microbial diseases.	
	Environment impact assessment (EIA) studies.	
	Concept of sustainable development and application of microorganisms	
	towards sustainable development; Microorganisms for clean energy.	
3.	Biomonitoring and microbial bioremediation of pollutants.	(15)
	Application of microorganisms for pollution Biomonitoring-biotracers	
	and biosensors, microbes as Bioindicators.	
	Bioremediation technologies : Microorganisms for bioremediation of	
	oil spills (biodegradation bioaugmentation biostimulation	
	biogurfactanta) have mately vanabiotics (biotransformation as	
	wetch client) and measicity of a sector is des	
	metabolism) and recalcitrant pesticides.	
	waste water treatment plants: Primary, secondary and tertiary	
	treatment of waste water. Concept of microbial consortia and microbial	
	biofilms in waste management and pollution abatement.	
	Valorization of agro waste: Containing lignin, cellulose and pectin.	
	Intimate coupling of photocatalysis and microbial biodegradation	
	(ICPB) for advanced treatment of organic pollutants.	
Pedagogy:	Lectures/tutorials/assignments	
References/	Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F et al. (2019).	
Readings	Scientists' warning to humanity: microorganisms and climate change.	
_	Nature reviews microbiology, 17, 569- 586.	
(Latest	Kennish, M. J. Practical Handbook of Estuarine and Marine Pollution.	
editions)	CRC Press, Francis and Taylor.	
	King, R. B., Sheldon, J. K., & Long, G. M. Practical Environmental	
	Bioremediation: The Field Guide. CRC Press.	
	Liu, W-T. and Jansson, J. K., Environmental Molecular Microbiology,	
	Caister Academic Press.	
	Medigan, M. T., Bender, K. S., Bukley, D. H., Sattley, W. M., & Stahl,	
	D. A. Brock Biology of Microorganisms. Pearson.	
	Mitchell, R. and Kirchman, D. L., Microbial Ecology of the Oceans,	
	Wiley Publishers.	
	Munn, C., Marine Microbiology: Ecology and Applications, Garland	

	Science, Taylor and Francis Group, N.Y.	
	Murugesan, A. G. and Rajakumari, C., Environmental Science and	
	Biotechnology: Theory and Techniques, MUP Publishers.	
	Naik, M. and Dubey, S. K., Marine Pollution and Microbial	
	Remediation, Springer Publications.	
	Norris, J. R. and Ribbons, D.W., Methods in Microbiology, Vol. 18 &	
	19, Academic Press	
	Osborn, A. M. and Smith, C. J., Molecular Microbial Ecology, Taylor	
	and Francis.	
	Satyanarayana, T., Johri, B. and Anil, T., Microorganisms in	
	Environmental Management, Springer Publishers	
	Scragg, A. H., Environmental Biotechnology, Longman Publishers.	
	Sharma, P. D., Environmental Microbiology, Alpha Science	
	International.	
	Willey, J. M., Sherwood, L. M., & Woolverton, C.J. Prescott's	
	Microbiology. McGraw-hill Education.	
Learning	Applying the understanding of the microbial diversity, community	
Outcomes	structure and role of biogeochemical cycling of nutrients, for	
	bioremediation and sustainable development.	

Programme: M.Sc. (Microbiology)

Course Code: MIPE-401 Title of the **BIOREMEDIATION** [P] Number of Credits: 1, Practical

ENVIRONMENTAL MICROBIOLOGY AND **Course: Contact hours: 30 Effective from Academic Year: 2022-23**

Prerequisites	It is assumed that the students have a basic knowledge of	
	environmental pollution and microbiology.	
Objective:	To familiarize with the techniques of waste water analysis,	
	biodegradation of aromatic pollutants and bioremediation of	
	metal/metalloid pollutants.	
Content:	<u> </u>	(30)
1.	Analysis of water samples for COD, BOD and microbial load.	
2.	Isolation of hydrocarbon degrading microorganism	
	(degradation of sodium benzoate/Naphthalene).	
3.	Isolation of biosurfactant producing microorganisms.	
4.	BATH assay for microbial adherence.	
5.	Isolation of selenite/tellurite resistant microorganisms for	
	application in bioremediation.	
Pedagogy:	Hands-on experiments in the laboratory, video, online data	
References /	As given under Theory Course MITE-401	
Readings		
Learning	1. Able to perform waste water analysis; biodegradation of	
Outcomes	aromatic pollutants	
	2. Able to demonstrate the role of microorganisms in	
	bioremediation.	