Programme: M. S Course Code: MS Number of Credi Effective from AS	Sc. (Marine Sciences) SO 265 Title of the Course: Remote Sensing and its applications Practical ts: 02 Y:June, 2018-19
Prerequisites for the course:	Students undergoing course in any branch of Marine Sciences.
Objective:	This course is the practical component of the theory students learn. This involves satellite data processing for various applications of Ocean/earth/ atmosphere. In this course, students will be exposed to different satellite data, various corrections to be applied and finally image processing for a finished geophysical product.

Content:

Module - I 1. Field survey and laboratory analysis to generate apparent optical properties from case II waters

24 hours

	 using in-water radiometer, and profiles of salinity and temperature using conductivity, temperature and Depth (CTD) sensor, (16 hrs; Ref 1) 2. Generation of Inherent Optical properties (IOP) of optically active substances (OAS), namely absorption of chlorophyll-a (Chl-a), Chromophoric Dissolved Organic Matter (CDOM) and Total Suspended Inorganic Matter (TSM) from water samples collected during the field survey of case II waters (10 hrs; Ref 1) 3. Simulation of remote sensing reflectance and water leaving radiance from case II waters (4 hrs; Ref 2) Module – II 1. Simulation of remote sensing reflectance for each optically active substance and delineation of range of wavelengths susceptible to each OAS and development of empirical algorithms (10 hrs; Ref 3) 2. Generation of aerosol optical depth using sun-photometer and analysis of aerosol optical depth to estimate atmospheric turbidity parameter and Angstrom exponent (8 hrs; Ref 4,5,8) 3. Satellite data processing to map chlorophyll <i>a</i>, using ERDAS IMAGINE SeaDAS (12 hrs; Ref
Pedagogy:	6, 7 and 8) This course is done through various programming to estimate Parameters followed by usage of different image processing packages. One such package student's use is SeaDAS software.
References/ Readings	 Regional validation of MERIS CHLOROPHYLL products in North coastal waters (REVAMP) Protocol, based on NASA and colors protocols, 2002 - Tilstone, G.H, Moore, G.F, Sorensen. K, Doerffer. R, Rottgers, K.G, Ruddick. R, Psterkamp, P.V and Jorgensen, ENVISAT – 1 Physical principles of remote sensing, 1990 – Rees, W.G., Cambridge Univ. press, U.K. 25 Ind Remote sensing: Principles and interpretations (2 edn), 1987 – Floyd and F. Sabnis Jr, W.H. Freeman & Co., New York. Theory and applications of optical remote sensing, 1989 – Asrar, G., John Wiley & Sons. Introduction to satellite oceanography, 1985 – Maul, G.A., Martinus Nijhoff Publ. Advanced remote sensing from theory to applications (Vol.1, 2 & 3), 1981, Chlamys, F.T., Addison – Wesley Publ. Co. Inc., Canada. Oceanography from space, 1987 – Grover, J.A.R., Plenum Press, New York. Remote sensing of atmospheres and oceans, 1980 – Deepak, A., Academic Press. SBE plus CTD, User's manual www.seabird.com/pdf_documents/manuals/9 plus_017.pdf Regional Oceanography, an Introduction, 2nd edition, 2003 - Tomczak, Mattias and Stuart Godfrey J, , Daya Publishing house, Delhi.
Learning Outcomes	Students will be thoroughly trained in different process of satellite Data so as to generate various geophysical products.