Programme: M. Sc. (Marine Sciences)			
Course Code: MS	SO 281 Title of the Course: Marine Chemistry Practical IV		
Number of Credi	ts: 01		
Effective from AY: June 2018-19			
Prerequisites	Students who have undergone semester I of Marine Sciences.		
for the course:			
Objective:	This course deals with the Analytical Chemistry of Seawater and laboratory simulations.		

Content:	 Spectrophotometric determination of nitrate in seawater by resorcinol method (6 hrs; Ref 2, 7) Spectrophotometric determination of ammonia in seawater by oxidation method (6 hrs; Ref 3) Laboratory experiments to study variation of pH on river water-seawater interactions (mixing experiments followed by pH measurements by pH meter) (6 hrs; Ref 1, 6, 11) Determination of dissolved Al spectrophotometrically by pyrocatechol violet method (6 hrs; Ref 1) Reactivity of dissolved Al with particulate material: laboratory simulations (mixing experiments followed by determination of dissolved Al spectrophotometrically by pyrocatechol violet method (6 hrs; Ref 1) 	24 hours
Pedagogy:	Laboratory experiments/ field studies	
References/ Readings	 Methods of Seawater Analysis, 1983, 1999 – Grasshoff, K., Ehrhardt, M. and Kremling, K.; Verlag Chemie, Weinheim. Organic Reaction Mechanisms, 1997 - Knipe, A. C. and Watts, W. E., John Wiley and Sons, New York. A Manual of Chemical and Biological Methods for Seawater Analysis, 1984 – Parsons, T. R., Maita, Y. and Lalli, C. M.; Pergamon Press, Oxford. Aquatic Chemistry, 1981, 1996 – Stumm, W. and Morgan, J. J., John Wiley and Sons, New York. Aquatic Surface Chemistry, 1987 – Stumm W., John Wiley and Sons, New York. Practical Estuarine Chemistry, 1985 - Head, P.C., Cambridge University Press, Cambridge. A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater, 2006 - Zhang, J. Z. and Fischer, C. J. Marine Chemistry, 99, 220 – 226. Phosphorus release from lake sediments: effects of pH, temperature and dissolved oxygen, 2014 - Wu, Y., Wen, Y., Zhou, J. and Wu, Y., KSCE Journal of Civil Engineering, 18, 323 – 329. The effect of pH on the release of phosphorus from Potomac estuary sediments: Implications for blue-green algal blooms, 1991 - Seitzinger, S. P., Estuarine, Coastal and Shelf Science, 33, 409-418. Emission of carbon dioxide from a tropical estuarine system, Goa, India, 2001 - Sarma, V.V.S.S., Dileep Kumar, M. and Manerikar, M., Geophysical Research Letters, 28, 1239-1242. 	
	 Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters, 1975 - Mook, W.G. and Koene, B.K.S., Estuarine, Coastal and Marine Science 3, 325-336. Sorption model for dissolved and leachable particulate Al in the Great Ouse estuary, England, 2012 - Upadhyay, S., Aquatic Geochemistry, 18, 243-262. 	
Learning Outcomes	 Develop analytical skills to determine the concentrations of various chemical parameters, such as nitrate, ammonia and Al in seawater/aqueous systems. New analytical technique for nitrate and ammonia is adopted. Laboratory simulations are conducted to understand the mechanisms of reactions. Apply techniques to seawater/natural waters to study the biogeochemistry of the marine environment/aquatic systems. 	